Strong Gravity & Black Holes

m Outline of this lecture
e Introduction to General Relativity
e Spacetime metrics
e Gravitational redshift about a black hole
e Orbits and motions about a black hole
e Relativistic emission lines from disks
e The ISCO and black hole spin

I : Introduction to GR

Reminder about Special Relavitity

m Einstein postulated

e Laws of physics are the same in all inertial frames of
reference (there is no absolute reference frame)

e The speed of light is the same in all inertial frames of
reference

m Leads to some dramatic consequences
e Time-dilation : Moving clock runs slowly by y=(1-v2/c2)-1/2

e Length contraction : A moving object is compressed in the
direction of motion by factor gamma=(1-v2/c2)-1/2

e Space and time dimension unified together; spacetime

As* = At? — (Ax* + Ay + AzZ?)
e Mass-energy equivalence : E=mc2
e Gravity is not included in framework of SR



I : Introduction to GR

The Einstein Tower Experiment

How does gravity affect light?
Thought experiment:

e Send photon (energy E;) upwards in a
gravitational field Converter

e Suppose photon at top has energy E,. Convert
energy into mass (E,=mc?) and drop

e Convert mass back into photon. If there are no
loses, final energy should be the same
m  Photon must lose energy on the way up...
E
Ei=E,+mgh=E; + <c_22> gh 5\
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m  Thus, observer at the top will see frequency
of photon decreased... gravitational redshift. Einstein Tower

m  Surface of Earth is NOT inertial reference Experiment
frame (in the Special Relativity sense)

m  Free falling frames ARE inertial...
Einstein Equivalent Principle
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I : Introduction to GR

Fundamentals of General Relativity

Field equations
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distribution curvature

e

Equivalence Principle




I : Introduction to GR

Introduction to Metrics

= Metrics tell you how to compute distances within a
particular mathematical space

m Simple 3-d space (Cartesian coordinates)

ds? = dx* + dy? + dz?

m The same flat space can be described with spherical polar
coordinates, giving a different looking metric

ds? = dr? 4+ r*(d6* + sin* 0d¢?)

m These forms describe the same metric, just in different
coordinates. They both describe flat 3-d space

= An example of a fundamentally different space... spacetime of
Special relativity (flat spacetime; Minkowski space)

ds* = dt* — (dx* + dy* + dz?)

II : Black holes, gravitational
redshift and the event horizon

= Let’s now come to black holes...
Start with non-spinning, uncharged black holes

m Use “spherical polar” like coordinates, supplemented by time
as measured by an observer at infinity... solving Einstein’s field
equations, we get the Schwarzschild metric...

-1
ds? = (1 — 26M arr — (1 - 2GM dr? —r? [d@z + sin? Gdd)z]
c2r c2r

m Gravitational Redshift
e Imagine a clock at rest (dr=d6=d®=0)
e dt = length of clock “tick” as measured by observer at infinity
e ds = dt = distance along spacetime-path = proper duration of clock’s “tick”

e So.. and...

dt (1 2GM)1/2 dt 2GM

— = ——>oo[157’\
dt

c2r dt c2
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r (GM/c?)

r=2GM/c? is an infinite redshift surface (Event horizon)

III : Orbits about a black hole

Basic theory

m Particles (including photons) follow geodesics through space-
time... i.e. they follow the path that minimizes or maximizes

the spacetime distance
m Start with the metric...

—1
it = (1= 2M) g (1 Z2GMN T |46 + sin? 6dgs?
c2r c2r

m Spacetime distance traveled along path P (measured out by
proper time coordinate) is

S = / Cdr
with p

- 2GM\ [ dt\? 2GMN\ "t rdr\* L /deN? ., [dd\?
o= () (&) -(-55) (@) 7 |() e (R)



III : Orbits about a black hole

Equations of motion and conserved quantities

m  This kind of problem is solved using the calculus of variations

m  Analysis results in set of differential equations that define the
orbit of the particle/photon... Euler-Lagrange equations:

oL d [JdL dx
—— — | — 1 =0 h \ = — x:t/rlgl
ox dt <8x> where *="r ( ?)
m Important special case... if metric (and hence L) has no explicit
dependence on a coordinate, then
oL oL

— =0 = — = constant of motion
ox ox
m Time-independence and axisymmetry give conservation of

energy and conservation of angular momentum respectively.

oL 2GM dt (Conservation of

a5 = 0 = E= (1 -2 ) el constant energy)

oL d ;

—— =0 = (=r’sin? B—d) = constant (Conservation of

op dt angular momentum)

III : Orbits about a black hole

Example: calculating path of radially infalling particle

m Assume particle is at rest at infinity. Use this fact to

determine conserved energy...

EE<1_2GM> at _

2r )dt
m For a particle with mass, ds=drT, so
_ds _

2GMY ([ dt)? 26M\ " dr’
2 — - - — J - =
= L= (1 c?r ) <d1’> <1 c2r ) dr !

1 1 2
- 1_2GM 2 1_2GM ﬂzl
c2r c2r dr

dr\? 2GM
2_ (% — _
= E <d7) (1 c2r >

_ (dr 2 26M
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III : Orbits about a black hole

Falling radially into a black hole — victim’s view
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III : Orbits about a black hole

Falling radially into a black hole — external view
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III : Orbits about a black hole

The nature of the event horizon

m S0, we have learned important things about
the nature of the event horizon...

m The Event Horizon is...
e The infinite redshift surface

e The place where infalling objects appear to “freeze”
according to external observers

e NOT a real singularity, since infalling observers pass
through it unharmed

e The boundary of the causally disconnected region
(we didn't prove this!)

m The real singularity is at r=0

III : Orbits about a black hole

Some key results

m Can identify some special radii that are relevant for
orbits of particles around black holes

m For massive particles (time-like geodesics, ds2>0)

e r=6GM/c?... innermost stable circular orbit (ISCO)
= Beyond this radius, circular orbits are stable (as in Newtonian case)
= Inside of this radius, circular orbit unstable and will spiral into BH

e r=4GM/c2... marginally bound orbit

= Particle in circular orbit here has same energy as particle at rest at
infinity.
= Can transfer particle into this orbit from infinity with no dissipation!

m For massless particles (null geodesics, ds2=0)

e r=3GM/c2... photon circular orbit
= Photon grazing a black hole closer than this will fall into the black hole
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Non-spinning black hole; i=30 degrees
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m Line profiles affected by dote/moce
e Doppler shift <f
e Gravitational redshift NGC3783

e Other “astrophysics”...
Compton broadening,
blending of lines etc...

e Of course, need good
continuum modeling to
study broad iron lines b
m Principal parameters !
Line energy
Disk inclination
Inner & Outer radii

Run of emissivity between
inner and outer radii

Energy (keV)
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V : Spinning black holes

m Remarkably, the equations of GR can be solved exactly
even when BH is spinning... result is the Kerr Metric:

ds? = _(1 - %)dﬁ - 4‘""’;"- O tag + % dr* + $d6* + (rz +a? + 2—“""';'"' 0)sin3 0d¢?

A=7r*—2mr+a*,

T =r? + a*cos* 0,

e “a”is the angular mtm parameter (between -1 and +1)

e Qualitatively new thing is the non-zero “cross-term” in the metric
(dt do)... this induces frame-dragging

e Frame dragging becomes extreme where 2mr>% (ergosphere)
e Event horizon is smaller than Schwarzschild

GM s
I’L»w = C—2(1+ 1_ﬂ2)

e ISCO is smaller for prograde orbits, larger for retrograde
e Efficiency (n=1-E.,) is higher for larger prograde spin
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Non-spinning Rapidly-spinning
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a=-1 -> r=9GM/c?
a=0 -> r=6GM/c?
a=1 -> r=GM/c?
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