Dynamics and how to use the orbits of stars to
do interesting things

chapter 3 of S+G- parts of ch 2 of B&T and parts
of Ch 11 of MWB (Mo, van den Bosch, White)

A Guide to the Next Few Lectures

*The geometry of gravitational potentials : methods to derive gravitational
potentials from mass distributions, and visa versa.
*Potentials define how stars move
consider stellar orbit shapes, and divide them into orbit classes.
*The gravitational field and stellar motion are interconnected :
the Virial Theorem relates the global potential energy and kinetic energy of
the system.
* Collisions?
* The Distribution Function (DF):
the DF specifies how stars are distributed throughout the system and
with what velocities.
For collisionless systems, the DF is constrained by a continuity equation :
the Collisionless Boltzmann Equation
*This can be recast in more observational terms as the Jeans Equation.
The Jeans Theorem helps us choose DFs which are solutions to the continuity
equations

*Adapted from M. Whittle



A Reminder of Newtonian Physics sec 2.1 in B&T

Newtons law of gravity tells us that two masses attract
each other with a force
d GmM ¢ (x) is the potential

If we have a collection of masses acting on a mass
m_ the force is
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the gravitational potential. If we can approximate
the discrete stellar distribution with a continuous
distribution p.
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Conservation of Energy and Angular Momentum

In the absence of external forces a star will conserve
energy along its orbit

d —_—— -
v-m(mv)— mvwv-\VV & (x),

v i(m\i)—i—m\/-vqﬁ()\():o

dt
e 8 .8 .0
i —v-V & (x) V=X—+4+y—+2—
But since P I y Ay 92
VA R
d ™

gel o (VH+mP(x)]=0

dt e {ﬁ,‘\\i]areme Utk it respcivecrcions.

This is just the KE + PE

dl. d Angular momentum L

— v:_



Some Basics - M. Whittle

The gravitational potential energy is a scalar field
its gradient gives the net gravitational force (per unit mass) which is a vector
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Poisson's Eq+ Definition of Potential Energy (W)

So the force per unit mass is ) ' '
P p(x) 1s the density dist

(X_X')dsxl
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To get the differential form we start with the definitic
. 2 .
of @ and applying V*to both sides S+G pg 112-113
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Potential energy W
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Derivation of Poisson's Eq
So the force per unit mass is

F(x)z—V(I)(x)zj'Gp(x')(x_x;)d3x'
Ix—x|

To get the differential form we start with the definitic
of @ and applying V?to both sides

- Gp(x')
Ix —x|

V2o (x)=—V? | d®x

=4mwGp(x) |Poisson's equation.

see S+G pgl12 for detailed derivation or web page
'Poisson's equation'

Characteristic Velocities
V2 ireutar =T d@(r)/dt=GM/r; v=sqrt(GM/r) Keplerian

velocity dispersion o?=(1/p) [p (0®(r,z)/dz)dz
or alternatively o?(R)=(4xG/3M(R) [rp(r) M(R) dr

escape speed =v_ =sqrt(2P(r)) or P(r)=1/2v?_
so choosing r is crucial




More Newton-Spherical Systems B&T 2.2

Newtons st theorem: a body inside a spherical shell has no net
gravitational force from that shell; e.g. V®(r)=0

Newtons 2nd theorem: the gravitational force on a body outside a
spherical shell is the same as if all the mass were at a point at the
center of the shell.

Simple examples:

Point source of mass M; potential d(r) =-GM/r;

definition of circular speed; speed of a test particle on a circular orbit
at radius r

v2 =r d®(r)/dt=GM/r; v =sqrt(GM/r) ;Keplerian

circular circular

velocity dispersion o?=(1/p) |p (6®(r,z)/0z)dz
escape speed =sqrt[2d(r)]=sqrt(2GM/r) ; from equating kinetic
energy to potential energy 1/2mv?=|d(r)|

Escape Speed

As 1 goes to infinity ¢(r) goes to zero
s0 to escape v2>2¢(r); e.q. V... =sqrt(-2¢(r))

Alternate derivation using conservation of energy

Kinetic+Gravitational Potential energy 1s constant
KE,+U,=KE,+U,
Grav potential =-GMm/r; KE=12mv,__ 2>

escape
Since final velocity=0 (just escapes) and U at
infinity=0
12mv.. .>-GMm/r=0

escape 0



Gravity and Dynamics-Spherical Systems- Repeat

e Newtons 1% theorm : a body inside a a spherical shell has no net force from that

shell V¢ =0

e Newtons 2" theorm ; a body outside the shell experiences forces as if they all
came from a point at the center of the shell-Gravitational force at a point outside a
closed sphere is the same as if all the mass were at the center

* This does not work for a thin disk- cannot ignore what is outside of a given

radius

* One of the prime observables (especially for spirals) is the circular velocity; in
general it is V2(R)/R=G(M<R)/R? more accurate estimates need to know shape of

potential

* so one can derive the mass of a flattened system from the rotation curve

* point source has a potential p=-GM/r

* A body in orbit around this point mass has a circular speed v 2=r ¢pd/dr=GM/r

e v _=sqrt(GM/r); Keplerian

* Escape speed from this potential v
energy KE=1/2mv?

escape

escape )

=sqrt(2¢)=sqrt(2GM/r) (conservation of

11

Homogenous Sphere B&T sec 2.2.2

* Constant density sphere of radius a and density p,
* M(r)=4nGrip, ;r<a
¢ M(r)=4nGa’p, ; r>a
d(R)=-d/dr(M(R))’ $(R)=-3/5GM?/R ; B&T 2.41)
R>a ¢(r)=4nGa’p,=-GM/r
R<a ¢(r)=-2nGp,(a>-1/3r?));
V2= (4t/3)Gp,r?: solid body rotation R<a
Orbital period T=2nr/v .. =sqrt(3w/Gp,)
Dynamical time=crossing time =T/4=sqrt(37/16Gp,)

cire

Potential is the same form as an harmonic oscillator
with angular freq 2n/T (B&T 2.2.2(b))

Regardless of r a particle will reach r=0 (in free fall) in
a time T=/4

Eq of motion of a test particle INSIDE the sphere is
dr?/dt?>=-GM(r)/r*=-(4n/3)Gp,r
General result dynamical time ~sqrt(1/Gp)
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Some Simple Cases

e Constant density sphere of radius a and density p,
Potential energy (B&T) eq 2.41, 2.32
O(R)=-d/dr(M(R))
R>a ¢(r)=4nGa’p,=-GM/r
R<a ¢(r)=-2nGp,(a>-1/3r?));
V2= (4t/3)Gp,r? solid body rotation

Potential is the same form as a harmonic oscillator

e.g. the eq of motion is d?r/dt>=-GM(r)/r=4m/3Grp; solution to harmonic
oscillator is

r=Acos(wt+¢d) with w= sqrt(4m/3Gp)=2n/T
T=sqrt(3n/Gp,)=2nr/v

circ
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Spherical dystems:Homogenous sphere of radius a

Summary

e M(r)=4/3nr3p (r<a); r>a M(r)=4/3nr’a

* Inside body (r<a); ¢(r)=-2nGp(a>-1/3 r?) (from eq. 2.38 in B&T)
Outside (r>a); )¢(r)= -4nGp(a’/3)

Solid body rotation v.2=-4nGp(r?/3)

Orbital period T=2mr/v =sqrt(3n/Gp);

a crossing time (dynamical time) =T/4=sqrt(37/16Gp)

potential energy W=-3/5GM?/a

The motion of a test particle inside this sphere is that of a simple harmonic
oscillator d’r/dt?>= -G(M(r)/ r>=4nGpr/3 with angular freq 25t/T

no matter the intial value of r, a particle will reach r=0 in the dynamical time
T/4

In general the dynamical time t;,,~1/sqrt(G<p>)

and its 'gravitational radius' r,= GM?/W

14



Star Motions in a Simple Potential

* if the density Q in a spherical galaxy is constant, then a star following
a circular orbit moves so that its angular speed Q(r) =V(r )/r is
constant.

e astar moving on a radial orbit, i.e., in a straight line through the
center, would oscillate harmonically in radius with period

o P =sqrt[37/Go]~ 3t; where ty =sqrt[1/GQ]: S&G sec 3.1
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Not so Simple - Plummer Potential sec 2.2 in B&T

e Many astrophysical systems have a 'core'; e.g. the surface brightness flattens in the
center (globular clusters, elliptical galaxies, clusters of galaxies, bulges of spirals) so
they have a characteristic length

* so imagine a potential of the form -¢(r)=-GM/sqrt(r>+b?); where b is the Plummer
scale length

V2D (r)=(1/r") d/dr(*d¢/dr)=3GMb? (r*+b*)**=47Gp(r) Poissons eq
and thus
p(r) =(3GM/47b3)[ 1+(1/b)"2

Now take limits r<<b  p(r) =(3GM/4mb?) constant
>>b  p(r) =(3GM/4nb)rs finite

Plummer potential was 'first' guess at modeling 'real’ spherical systems; it
1s one of a more general form of 'polytropes' B&T (pg 300)

Potential energy W=3nGM?/32b

16



Spherical systems- Plummer potential

* Another potential with an analytic solution is the Plummer potential - in
which the density is constant near the center and drops to zero at large radii -
this has been used for globular clusters, elliptical galaxies and clusters of

galaxies.

* One such form- Plummer potential

d=-GM/(sqrt(r>+b?); b is called a scale length

The density law corresponding to this potential is

(using the definition of V2¢ in a spherical coordinates)

5 1 9, 0> | P 1
V‘E—,—(r‘,—]-ir'
» or ar

$— -
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V2¢ =(1/r?)d/dr(r*d¢/dr)=(3GMDb?)/((r?+b?)?)>'?

0(r)=(3M/47b?)(1+(1/b)2)5"2
Potential energy W=-3nGM?/32b

* B&T pgs 65-72 ; there are many more forms
which are better and better approximations to the
true potential of 'spherical' systems; I will not
cover them in detail in the lectures, please read
the relevant sections of the text.

* However I will cover 2 others- the modified
Hubble law which is frequently used for clusters
of galaxies

 B&T eq 2.53 starts with the luminosity density
J=io(1+(r/a)?) 3"
* which gives surface brightness
I(r)=2aj (1+(r/a)?)"!
e atr=a;I(a)=1/21(0); a is the core radius
* Now if light traces mass and the mass to light
ratio is constant

M={j(r)d*r=

47a’Gj, [In[R/a+sqrt(1+(r/a)?)]-(r/a)(1+(r/a) 12}
B&T eq 2.56

* and the potential is also analytic

a (. . 9>
— (sm¢ d—¢ )
17
Many More Not S0
Simple Analytic
Forms
z > >
R /r
&T fig2.3
Problems: mass
diverges
logarithimically

BUT potential is finite
and at r>>a 1s almost
GM/r

18



Spherical Systems

* A frequently used analytic form for the surface brightness of an
elliptical galaxy is the Modified Hubble profile

e I(R)=2j(o)a/[(1+(r/a)?] which has a luminosity density distribution
JO=iO)[(1+(r/a)?] -
* this is also called the 'pseudo-isothermal' sphere distribution

» the eq for ¢ is analytic and finite at large r even though the mass
diverges (eq. 2.56,2.57 in B+T)

d=-GM/r-(4nGj,a)*/sqrt[1+(1/a)?]
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Last Spherical Potential

* In the last 15 years numerical simulations have
shown that the density distribution of dark matter

can be well described by a form called 'NFW' The NEW density
density distribution (B+T eq 2.65) distribution is an
p(1)=p(0)/[(r/a)*(1+(r/a))P~*] with analytic
(o,P)=(1,3) approximation

to numerical
simulations of cold
Integrating to get the mass dark matter

M(r)=4nGp(0)a’ln[1+(r/a)]-(r/a)/[ 1+(r/a)]
and potential ¢=[In(1+(r/a)]/(r/a)]

See problem 3.7 in S&G

There is a long history of different potentials and
B&T goes thru it... no longer relevant to modern
work except to improve your skills !

20



Other Forms

B+T discuss many other forms which
are interesting mathematically but are
not really relevant to the rest of our
class.

However all the forms so far have a
Keplerian rotation v~r-'> while real
galaxies have flat rotation curves
v.(R)=v,

A potential with this property must
have d@/dr=v,*/R; ¢p=v,’InR+C
However this is a rather artificial form;
real galaxies seem to be composed of
3 parts: disk (D), bulge (B), halo (H)
and it is the sum of the 3 that gives the
flat rotation curve (very fine tuned and
very flexible )

tFigure 2.5 Circtilar speed versus -
. [radius for the Jaffé, Hernquist, ang

ve/V(4mGpoa®)
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pov v et e by

Summary of Dynamical Equations
gravitational pot'l ®(r)=-Glp (r)/|r-r'| dr

Gravitational force F(r)=-V®(r)

Poissons Eq V>®(r)= 4nGp; if there are no sources

Laplace Eq V’®(r)=0

Gauss's theorem : |[V®(r)eds’=4nGM

Potential energy W=1/2]rp(r)Vdd3r

In words Gauss's theorem says that the integral of the normal
component of V® over and closed surface equals 4G times the mass

enclosed

22



Potentials are Separable

* We make the fundamental assumption that the potential of a system
can be decomposed into separable parts-

e This is because Poisson's equation is linear :
 differences between any two ¢—p pairsisalsoa ¢—p pair, and
differentials of ¢—p or arealso ¢—p pairs

* €.8. Prorar=Pouiget Paisk Phato

23

So Far Spherical Systems

* But spiral galaxies have a
significant fraction of the
mass (?; at least the
baryons) in a flattened
system.

24



Kuzmin Disk B&T sec 2.3 S&G Prob 3.4;

This ansatz is for a flattened system and
separates out the radial and z directions
Assume Py (z,R)= GM/[sqrt(R*+(a+z)?)] ;
axisymmetric (cylindrical)

R is in the x,y plane

Analytically, outside the plane, {y has the

form of the potential of a point mass
displaced by a c{lfstance 'a’ along the z axis

— e4.R(z)= < (0,a); z<0
(0,-a); z>0
Thus V2®=0 everywhere except along z=0-
Poisson's eq

Applying Gauss's thm |[V®d2s=4nGM

and get Z(R)=aM/[2m(R2+a?)?]

this 1s in infinitely thin disk... not too

bad an approx

Isothermal Sheet MBW pg 498

(0.2)

B&T fig 2.6

Use of Gauss's thm (divergence)
the sum of all sources minus the sum of
all sinks gives the net flow out of a

region.

A 4

A 4

1

1

[VOd2s=41GM=21GZ
as z—0 ; 3=(1127)G dD/dr

simple model for the vertical structure of disk galaxies

Allows an estimate the disk mass from a measurement of the vertical
velocity dispersion, 0_, and the radial scale length, R, if one knows
the vertical scale height of the tracer population

The relevant Poisson eq is d*,/d (z/z4)*=1/2exp-(9,);

b,=¢/0%, and z; =0 /sqrt(SaGP(R,0))

0%(R) =(z/z)) GM R ,exp(—RR )

where z, is the vertical scale height of the disk and R is the radial

scale length

can solve for the density distribution the disk

Why do we want to do this? ?- Estimates of the mass for face on
galaxies where radial velocity data are impossible.

26



Flattened +Spherical Systems-B&T eqs

¢ Add the Kuzmin to GM

dy(R,2) = — . (2.69a)
the Plgmmer \/ R+ (a+ VEFR)
potential
e Whenb/a~0.2, When a = 0, &) reduces to Plummer’s spherical potential (2.44a), and when
qualitatively b =0, &y reduces to Kuzmin’s potential of a razor-thin disk (2.68a). Thus,

e ) depending on the choice of the two parameters a and b, ®); can represent the
similar to the light  potential of anything from an infinitesimally thin disk to a spherical system.
distributions of If we calculate V2®y;, we find that the mass distribution with which it is
disk galaxies, associated is (Miyamoto & Nagai 1975)

2 2 2 2 2 22
oni(Roz) = (b4M) aR?+ (a+3vV22+b )(‘é/i V22 +b?)  (2.69h)
T )[R+ @+ VIR 4 1)
FT T T T T T T [ T T T [ T T T ] T T T T T T3
1 E
< o —f
= 3
E oo b oo b b e o by by g 4
-6 —4 —2 0 2 4 6
R/a

Contours of equal density in the (R; z) plane for b/a=0.2 %

Potential of an Exponential Disk B&T sec 2.6

* As discussed earlier the light profile | Magss of exponential disk
of the stars in most spirals has an M(R)= [3(R)Rdr =

exponential scale LENGTH 2mZgR [1-exp( R/R(1+R/
.. Ry
2(R)=Z,exp(-R/R,) (this is surface !
brightness NOT surface mass when R gets large
density)- see next page for formula's |M~27=R,”

Do we learn anything from this ?? see

MWB 11.1.2

Fig 2.17 in B&T - how the circular
speed (a potential observable)
depends on the scale length for
different mass distributions.
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Potential of an Exponential Disk B&T sec 2.6

' ) _ Mass of exponential disk
The circular velocity peaks at R~2.16 Ry | m(Rr)= [Z(R)Rdr =

approaches Keplerian for a point mass |2nz R 2[1-exp( R/R )(1+R/
at large R (eq. 11.30 in MWB) and Ry]

depends only on 2 and Ry when R gets large

As long as the vertical scale length is M~275,R 2
much less than the radial scale the
vertical distribution has a small effect -

e.g. separable effects !

IF the disk is made only of stars (no DM)
and and if they all have the same mass
to light ratio I' , R is the scale length
of the stars , then the observables
I).,R,v.i(r) have all the info to

calculate the mass! »

Explaining Disks
e Remember the most important properties of disk dominated galaxies (MBW pg 495)
— Brighter disks are on average
e larger, redder, rotate faster, smaller gas fraction
— flat rotation curves
— surface brightness profiles close to exponential
— lower metallicity in outer regions
— traditional to model them as an infinitely thin exponential disk with a surface
density distribution Z(R)=2, ,exp(-R/R)
— This gives a potential (MBW pg 496) which is a bit messy
O(R, 2)=-2nGZ,2R, /[T (kR)exp(-klzl) /[ 1+(kR )2 2dk
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Exponential Disks

* Motivated by the exponential surface brightness profiles of disks
examine a potential that is generated by such a distribution (B+T
2.162)

2(R)=2,exp (-R/Rp) which gives a mass distribution
M(R)=2n[Z(R)RdR =27Z,R?;[1-exp(-R/Rp)(1+R/Rp)];

as shown in detail in eqs B&T 2.153-2.157 one gets a potential in the
form of Bessel functions

This comes from the use of Hankel functions (analogs of Fourier
transforms but for cylindrically symmetric systems)

S(k)=-2nG [ J,(kR)Z(R)RdR ; J, is a Bessel function order zero
d(R, 2)=-2nGZ, R [ [J(kR)exp(-klzl)]/[1+(kR)?]*>dk
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