
Solutions: Astronomy 540, Homework 2
Due: Wednesday, October 18th, 2006

1. There are several ways to solve this problem; we give two here. The first is a rather
easy way where we use a formula that we know from introductory physics, the second is
more complicated but arises from first principles.

Solution a: We can use Kepler’s Third law of motion. We know that the orbit does not
depend on the eccentricity only on the semi-major axis. Let’s consider an orbital path,
with an eccentricity of 1, and with a semi-major axis of R/2. The infall time (the time a
body reaches the center) is the half of a full period:

tff =
torb
2

=
πR

3
2

2
√

2GM
(1)

The average density of the star is
ρ =

3M

4R3π
(2)

Combining these we get the free fall time we were looking for:

tff =
1

4

√

3π

2Gρ
(3)

For this derivation, we used the fact that the gravitational force inside a homogeneous
sphere only depends on the mass inside the central sphere, while the force from the outer
shells cancel out (the Homeoid Theorem).

Solution b: This solution gives the answer without any assumptions.
Let’s take a star, and let’s divide it up into a central part (Mr) and into the outer shell

(with mass: dm and width: dr). The equation of motion is

dm
d2r

dt2
= −

GMrdm

r2
(4)

We can cancel out dm, and multiply by dr/dt

dr

dt

d2r

dt2
= −

GMr

r2

dr

dt
(5)

The boundary conditions at t = 0 are: r = r0, ρ = ρ0, v = 0; or, dr/dt = 0 and
Mr = 4r3

0πρ0/3. Multiplying equation (5) with dt, we get equation (6); and integrating
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that, we get equation (7):

dr

dt

d2r

dt2
dt = −

4πG

3r2
r3
0ρ0dr (6)

1

2

(

dr

dt

)2

=
4πG

3r
r3
0ρ0 + C1 (7)

At r = r0 (t = 0) we know that dr/dt = 0, so the constant of integration is

C1 = −
4πG

3
r2
0ρ0 (8)

so this gives:
dr

dt
=

√

8πG

3
ρ0r

2
0

(

r0

r
− 1

)

(9)

Let us use new parameters to make the derivation more simple. Let K be:

K =

√

8πG

3
ρ0 (10)

and let θ be
θ =

r

r0

(11)

This way
dθ

dr
=

1

r0

(12)

so dθr0 = dr. The equation of motion then becomes:

dθ

dt
= K

√

1

θ
− 1 (13)

Now let θ = cos2 ξ. This way
dθ

dξ
= 2 sin ξ cos ξ (14)

The equation of motion then becomes:

2 sin ξ cos ξ
dξ

dt
= K

√

1

cos2 ξ
− 1 (15)

= K
sin ξ

cos ξ
(16)

cos2 ξ
dξ

dt
=

K

2
(17)
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After separating the variables and integrating, this comes to be

1

2
ξ −

1

4
sin(2ξ) =

K

2
t + C2 (18)

Looking at the boundary conditions (t = 0, r = r0) we know that θ = 1 and cos2 ξ = 1,
which means that ξ = 0. So that gives us C2 = 0. At t = tff , we know that r = 0, which
means that θ = 0, so ξ = π/2. So at the end of the infall

π

4
−

1

4
sin(π) =

K

2
tff (19)

so the free-fall time is:
tff =

π

2K
(20)

If we substitute the value of K, we get:

tff =
1

4

√

3π

2Gρ
(21)

For the Sun, this value is about 27 minutes.

2.a The distribution function gives the density distribution in a unit volume over veloci-
ties. If we integrate the distribution function over velocities, we get the density at a certain
z position.

ρ(z) =
∫

∞

−∞

fdvz (22)

Substituting the distribution function, we get

ρ(z) =
ρ0

√

2πσ2
z

∫

∞

−∞

e
−

Φ(z)+v2
z/2

σ2
z dvz (23)

This can be rewritten as

ρ(z) =
ρ0

√

2πσ2
z

∫

∞

−∞

e
−

Φ(z)

σ2
z e

−

v2
z

2σ2
z dvz (24)

The first exponential part of the integral is a constant, so it can be brought out in front of
the integral. The second part is the well known Gaussian distribution with the 1/

√

2πσ2
z ,

which integrated over −∞ to ∞ equals one. So we get

ρ(z) = ρ0e
−

Φ(z)

σ2
z (25)
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For an axisymmetric thin disk, the Poisson equation’s dependence from R cancels, and
we get

d2Φ(z)

dz2
= 4πGρ(z) = 4πGρ0e

−
Φ(z)

σ2
z (26)

Let’s convert this with the dimensionless units given in the problem. We know, that z =

ζz0. That gives
z = ζ

σz√
8πGρ0

(27)

Let’s substitute this and the φ = Φ/σ2
z into the Poisson equation

d2 (φσ2
z)

d
(

ζ2 σ2
z

8πGρ0

) = 4πGρ0e
−φ (28)

The constants can be brought out of the derivative, and then we get the form we were
looking for:

2
∂2φ

∂ζ2
= e−φ (29)

2.b It can be noticed, that this is a harmonic oscillator type of equation, so let’s multiply
both sides with the derivative of the value. We get

2
dφ

dζ

d2φ

dζ2
=

dφ

dζ
e−φ (30)

This is the same type of integral as was equation (6) in the first problem. Let’s integrate
the equation.

(

dφ

dζ

)2

= −e−φ + c (31)

The integrational constant can be calculated if we know that the potential at the center of
the galactic plane is zero. That means that the gradient is also zero when ζ is zero. So we
get c = 1. We can take the square root of the equation and rearrange it.

dφ =
√

1 − e−φdζ (32)

We will have to integrate this equation. Since the square root part is not to convenient,
let’s change variables, and arrange the equation so we have the same variables at the
same side. Let x =

√
1 − e−φ. That means that

dx =
e−φ

2
√

1 − e−φ
dφ (33)
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dx =
1 − x2

2x
dφ (34)

dφ =
2x

1 − x2
dx (35)

That changes our equation to be
dζ =

2

1 − x2
dx (36)

By integrating that, we get
ζ + const = 2 tanh−1x (37)

Arranging that, and substituting x we get

tanh−1

(
√

1 − e−φ

)

=
ζ + const

2
(38)

Taking the hyperbolic tangent of the equation we get

√

1 − e−φ = tanh

(

ζ + const

2

)

(39)

>From the boundary conditions, we can see that the constant of integration is zero again.
So we get

e−φ = 1 − tanh2

(

ζ

2

)

(40)

Using tanh2 + sech2 = 1, we get

e−φ = sech2

(

ζ

2

)

(41)

In the a part of the problem, we saw that e−φ = ρ(z)/ρ0. Substituting for that as well as
for ζ we get the equation given by Spitzer:

ρ(z) = ρ0 sech2

(

z

2z0

)

(42)

3.a. The problem as given in Binney & Tremaine is a bit misleading, since if we use the
original Maxwellian distribution function given, we cannot derive the equation that we
are looking for. The original function given is

f0(v) =
ν0

(2πσ2)3/2
e−

v2

2σ2 (43)

We know that this is a Gaussian distribution, with the particles’ energy in the exponential
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part. Since our system also has a central mass (the black hole), the original Maxwellian
distribution function has to be modified, so that

Ei =
1

2
v2 + V (44)

where
V = −

GM

r
(45)

Our distribution function then is

f0(v) =
ν0

(2πσ2)3/2
e

GM
rσ2 −

v2

2σ2 (46)

The velocity distribution can be derived from

ν(r) = 4π
∫ vmax

vmin

v2f0(v)dv (47)

To calculate that, we have to know the boundary velocities. Since we are looking at "un-
bound" particles, we know that the smallest allowable velocity is their "free" velocity,
which is vmin =

√

2GM/r. The outer velocity boundary has to be ∞. Our starting equa-
tion then becomes

ν(r) = 4π
∫

∞

√
2GM/r

v2f0(v)dv (48)

By substituting our Maxwellian distribution, we get

ν(r)

ν0

= 4π
∫

∞

√
2GM/r

v2 1

(2πσ2)3/2
e

GM
rσ2 −

v2

2σ2 dv (49)

This equation is not straightforwardly solvable, but can be done using Mathematica,
which immediately gives the desired solution:

ν(r)

ν0

= 2

√

rH

πr
+ erH/r

[

1 − erf
(
√

rH

r

)]

(50)

3.b. To obtain the behavior at r � rH , we use equation (1C-13) from Binney & Tremaine
which says:

lim
x→∞

(1 − erf x) =
e−x2

√
πx

. (51)
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We can use this to approximate the second term for r → 0, which yields

ν(r)

ν0

≈ 2

√

rH

πr
+ erH/r e−rH/r

√
π
√

rH/r
. (52)

>From this it is straightforward to see that the second term goes to zero as r → 0. This
can also be seen by plotting the function, as shown in Figure 1.
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Figure 1: The second part of the density function

Hence the density profile at r � rH is

ν(r)

ν0

= 2

√

rH

πr
(53)

or
ν(r) ∝ r−1/2 (54)

4. To solve this problem, we have to make a few assumptions. The first, and most impor-
tant one, is that the Cluster Formation Rate (CFR) was constant throughout the lifetime
of the Galaxy. The data plot can be seen in Figure 2.
An equation can be fitted to the points

N = N010−ta, (55)

where N0 is an initial number density, t is the elapsed time, and a is a constant. The data
points are fit with N0 = 78 and a = 0.5.

To estimate the number of stars from dispersed clusters, we need to compute the
difference between the number of clusters observed in a time interval as compared to
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Figure 2: The fitted curve to the number density of clusters

the number of clusters that formed (ie., compute the area between a horizonatal line at
78clusters/kpc2/Gyr and the fit to the data points). This yields

Ndisp = 766
clusters

kpc2
x1000

∗
cluster

(56)

Converted to the number of stars per square parsec,

ρstars = .7665
∗

pc2
(57)

If we distribute this into a 100pc thick layer, we get

ρstars = 0.007662
∗

pc3
(58)

The stellar number density in the Solar neighborhood is

ρstars ∼ 0.14
∗

pc3
(59)

Which means that about 5% of the stars in the solar neighborhood have been formed in
clusters. This number is an underestimate primarily because of our assumption that the
star formation rate in the past was the same as it is now (likely was higher).
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