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ABSTRACT

To constrain the Galactic gravitational potential near the Sun (∼1.5 kpc),

we derive and model the spatial and velocity distribution for a sample of 9000

K-dwarfs that have spectra from SDSS/SEGUE, which yield radial velocities and

abundances ([Fe/H] & [α/Fe]). We first derive the spatial density distribution

for stars of three abundance-selected sub-populations by accounting for the sur-

vey’s selection function. The vertical profile of these sub-populations are simple

exponentials and their vertical dispersion profile is nearly isothermal. To model

these data, we apply the ‘vertical’ Jeans Equation, which relates the observable

tracer number density and vertical velocity dispersion to the gravitational poten-

tial or vertical force. We explore a number of functional forms for the vertical

force law, and fit the dispersion and density profiles of all abundance selected

sub-populations simultaneously in the same potential, and explore all parameter

co-variances using MCMC. Our fits constrain a disk mass scale height . 300 pc

and the total surface mass density to be 67±6 M⊙ pc−2 at |z| = 1.0 kpc of which

the contribution from all stars is 42±5 M⊙ pc−2 (presuming a contribution from

cold gas of 13 M⊙ pc−2). We find significant constraints on the local dark mat-

ter density of 0.0065± 0.0023 M⊙ pc−3 (0.25± 0.09 GeV cm−3 ). Together with

recent experiments this firms up the best estimate of 0.0075 ± 0.0021 M⊙ pc−3

(0.28± 0.08 GeV cm−3 ), consistent with global fits of approximately round dark

matter halos to kinematic data in the outskirts of the Galaxy.

Subject headings:
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1. Introduction

Since the works of Oort (1932, 1960), determining the Galactic gravitational potential

from the distribution and kinematics of stars has been one of the most instructive problem

in Galactic disk study. Comparing it with the mass density distribution of visible material

(stars and gas), one can derive the distribution of dark matter in the Galactic disk.

Comparisons of such local dark matter estimations with rotation curve (Weber & de Boer

2010) constrain the shape of the dark matter distribution.

Kuijken & Gilmore (1989a,b,c, hereafter KG89a,b,c) pioneered a practical approach

to constrain the Galactic potential near the Sun. They used K-dwarfs to estimate the

surface mass density of the total gravitating mass and the mass density of dark matter by

solving the ‘vertical’ Jeans’ Equation (i.e. in the 1D equation in the ẑ-direction), which

correlates the space density and velocity of tracer stars. They found the identified (i.e.

stellar and gaseous) surface density and the total surface mass density of all gravitating

matter within |z| ≤ 1.1 kpc from the Galactic plane near the Sun to be 48± 8 M⊙ pc−2 and

71 ± 6 M⊙ pc−2, respectively (KG89a,b,c Kuijken & Gilmore 1991, hereafter KG91). The

uncertainties are mainly caused by the measured errors in distance and velocities of the

K-dwarfs and the technique of recovering the vertical force Kz.

After KG91 there have been various other determinations of the disc surface mass

density based on different stellar tracer: Flynn & Fuchs (1994, hereafter FF94) derived

a surface mass density of 52 ± 13 M⊙ pc−2 for the known disc matter. With Hipparcos

data, Korchagin et al. (2003) focused Σ|z|<350 pc = 42 ± 6 M⊙ pc−2, by using red giants;

Holmberg & Flynn (2004, hereafter HF04) and Bienaymé et al. (2006) used K giants

and red clump stars to estimate the disk surface density again, and the values are

Σ|z|<1.1 kpc = 74 ± 6 M⊙ pc−2 and Σ|z|<1.1 kpc ∼ 57 − 79 ± 6 M⊙ pc−2, respectively. The

rather broad range in values implies that better data and techniques are needed to improve
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the measurement of the density distribution of Galactic disk.

In this paper, using the large sample of K-dwarfs observed in SDSS/SEGUE

(Yanny et al. 2009), we re-determine the disc surface mass density and mass density of dark

matter. In a number of aspects, this work follows KG89b, in particular in constraining the

“vertical force” Kz. However, the paper presents a number of new elements over previous

studies in addition to the new large data set. We split the data into abundance selected

sub-samples, which provide distinct probes of the same potential; and we simultaneously fit

densities and kinematics using Markov-Chain Monte Carlo (hereafter MCMC) approach.

Besides, we explore how the results depend on the functional forms for Kz.

This paper is organized as follows. In § 2, we describe the SEGUE/SDSS data, in

particular we emphasize the spatial selection function, the distance determination, and the

sub-samples of similar [Fe/H] and [α/Fe]. In § 3 we lay out how we determine the tracer

number density and vertical velocity dispersion, and practicalities of solving the Jeans

equation. The fitting results are shown and discussed in § 4 and § 5, with a summary in § 6.

2. DATA

For our analysis we aim for a sample of kinematics tracers that can be found in

disk populations of various ages and metallicities, and which cover distance of 0.2 kpc

to 2 kpc from the Sun. In the Sloan Digital Sky Survey (SDSS; York et al. 2000),

K-dwarfs best satisfy these criteria. The Sloan Extension for Galactic Understanding

and Exploration (SEGUE) is a subsurvey of SDSS-II (Abazajian et al. 2009) which

operated from 2005 August to 2008 July, to probe the formation and evolution of our

Galaxy. It obtained ugriz imaging of some 3500 deg2 of sky outside of the SDSS-I

footprint (Fukugita et al. 1996; Gunn et al. 1998, 2006; York et al. 2000; Smith et al.
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2002; Stoughton et al. 2002; Abazajian et al. 2003, 2004, 2005, 2009; Pier et al. 2003;

Ivezić et al. 2004; Adelman-McCarthy et al. 2006, 2007, 2008; Tucker et al. 2006), with

special attention being given to scans of lower Galactic latitudes (|b| < 35◦) in order to

better probe the disk/halo interface of the Milky Way. Overall, SEGUE obtained some

240,000 medium-resolution (R ∼ 2000) spectra of stars in the Galaxy, selected to explore

the nature of stellar populations from 0.3 kpc to 100 kpc (Yanny et al. 2009). The seventh

data release (DR 7) is the final public data release from SDSS-II occurring in October 2008.

SDSS-III, which is presently underway, has already completed the sub-survey SEGUE-II,

an extension intended to obtain an additional sample of over 120,000 spectra for distant

stars that are likely to be members of the outer-halo population of the Galaxy. Data

from SEGUE-II have been distributed as part of the eighth public data release (DR 8)

(Aihara et al. 2011a). The SEGUE Stellar Parameter Pipeline processes the wavelength-

and flux-calibrated spectra generated by the standard SDSS spectroscopic reduction

pipeline (Stoughton et al. 2002), obtains equivalent widths and/or line indices for more

than 80 atomic or molecular absorption lines, and estimates Teff , log g, and [Fe/H] through

the application of a number of approaches (see Lee et al. 2008a,b; Allende Prieto et al.

2008; Smolinski et al. 2011).

2.1. K-dwarf selection

KG89b suggested that the tracer star in the present context should have the following

properties: 1) they are phase-mixed and in dynamical equilibrium in Galactic potential;

2) they are common and distributed through all Galactic disc components; 3) the distance

of tracer star can be well determined. Therefore, considering present SDSS/SEGUE

observations, K-dwarfs are ideal stars which are used as tracer to measure the total disc

mass. Compare to the SEGUE G-dwarfs (e.g. Bovy et al. 2012a), they have the advantage
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that their minimal distance to be included in SDSS/SEGUE is almost two times closer.

Yanny et al. (2009) list the following color and magnitude cuts for identification and

targeting of K-dwarf candidates:

14.5 ≤ mr ≤ 19.0,

0.55 ≤ (g − r) ≤ 0.75.

In order to get reliable estimates for the ‘vertical’ (z) component of each star’s velocity,

we added two more criteria, the existence of a good proper motion measurement and the

existence of spectra in the data base

error of proper motion > 0.,

S/N > 15.

These criteria return 10,925 candidates in DR 8. However, DR 8 does not list [α/Fe], which

is very important in subsequent analysis for K-dwarf candidates. Besides, proper motions

of DR8 above declination δ > 41◦ are worse than those of DR7 because of the astrometric

calibration in DR8 (Aihara et al. 2011b). Thus, we use the [α/Fe] and proper motions from

DR 7 for all of these candidates. To eliminate K-giants, only stars whose log g > 4.0 are

taken in the present work, which in the end leaves 9,157 stars. Fig. 1 shows the number

density distribution of sample stars in [α/Fe] vs. [Fe/H] space.

2.2. Abundance-selected sub-samples

As shown in Fig. 1, the distribution of the K-dwarf sample in the [α/Fe] − [Fe/H]

plane is bi-modal, i.e. a metal-rich, α-deficient population and a metal-poor, α-enhanced

one, as found by Lee et al. (2011) and Bovy et al. (2012a) for SDSS G-dwarfs.
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Liu & van de Ven (2012) and Bovy et al. (2012b) have shown that the kinematics of

‘mono’-abundance sub-populations are relatively simple. Therefore, we will split our sample

of K-dwarfs into subdsets that are abundance-selected in the [α/Fe] − [Fe/H] plane (see

Fig. 1, black boxes)

• metal-rich: [Fe/H] ∈ [-0.5, 0.3], [α/Fe] ∈ [0., 0.15]

• intermediate metallicity: [Fe/H] ∈ [-1.0, -0.3], [α/Fe] ∈ [0.15, 0.25]

• metal-poor: [Fe/H] ∈ [-1.5, -0.5], [α/Fe] ∈ [0.25, 0.50]

These sub-samples contain 3672, 1416, and 2001 stars, respectively. Of course, all these

sub-population stars move in the same gravitational potential. We will present the analysis,

separating the three sub-populations.

3. The Galactic potential near the Sun

For the present context, we only consider the simple problem of solving the Jeans

equation for a one-dimensional slab and then to determine gravitational potential and hence

density of matter near the Sun (|R − R⊙| = 1.0 kpc and |z| . 1.5 kpc). Following KG89b,

we assume that: the Galactic potential is the sum of contributions by observable matter

and by dark matter and we assume the effective dark matter density is a constant. Hence,

the “vertical” Jeans equation can be written as (Binney & Tremaine 2008)

d

dz

[

ν⋆(z)σz(z)
2
]

= −ν⋆(z)
dΦ(z, R⊙)

dz
(1)

where Φ(z, R⊙) is the vertical gravitational potential in the Sun’s vicinity, i.e., we solve this

equation for R = constant. Here, ν⋆(z) is the vertical number density of the tracer stellar

population, and σz(z) the vertical velocity dispersion of exactly those tracers.
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The first derivative of Φ(z, R⊙) is the gravitational force perpendicular to the galactic

plane Kz(z)

Kz(z, R⊙) ≡ −dΦ(z, R⊙)

dz
(2)

The (1D) Poisson equation relates the potential to the disk vertical mass density,

4πGρtot(z, R⊙) =
d2Φ(z, R⊙)

dz2
(3)

where ρtot(z, R⊙) is the total mass density of all luminous components and the dark matter

contribution.

Combining Eq. 1, Eq. 2, and Eq. 3, one obtains

d

dz

[

ν⋆(z)σz(z)
2
]

= −ν⋆(z)Kz(z, R⊙) (4)

4πGρtot(z, R⊙) = − d

dz
Kz(z, R⊙) (5)

To solve Eq. 4 for a given tracer sub-population and derive the local mass density

distribution by using Eq. 5, we proceed as follows:

i) We determine ν⋆(z) and σz(z) for each of the three tracer populations directly from

the observations.

ii) We presume the ν⋆(z) is a simple exponential (Bovy et al. 2012a) of unknown scale

height ~hz. Here ~hz = [hz,1, hz,2, hz,3] correspond to the metal-rich, inter-intermediate

metallicity, and metal-poor sub-samples, respectively.

iii) We adopt a parameterized form of Kz(z, R⊙ | ~p).

iv) For each [~p,~hz], we fit for the best ν⋆(z) and σz(z), and get the probability of the data

given the parameters, i.e., P(σz , ν⋆ | ~p,~h)

v) We use a MCMC technique to sample the likelihood of the parameters and find the

best [~p,~hz].
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During the whole calculation, we assume a parameterized Kz model instead of

gravitational model, because it makes the calculation easier. After getting a reasonable Kz

form, gravitational potential can be derived by integration of Kz and mass density can be

determined through the first derivative of Kz. Here we will describe the details step by step.

3.1. Tracer number density

3.1.1. Distance estimates and coordinate system

To obtain z and vz of our sample stars in the Solar vicinity, we need to estimate

their distance first. Given the color indices (g − r and g − i), the r-band magnitude, and

metallicity, the absolute magnitude is estimated by fitting to fiducial color-magnitude

relations, calibrated through star cluster spectroscopy. The fiducial sequences for (g − r, r)

and (g − i, r), based on YREC+MARCS isochrones, as described in An et al. (2009), are

adopted. Then it is straightforward to determine the distance D = 10
r−Mr

5
+1 pc.

Such distances were estimated by fitting the fiducials for the two colors above

separately, yielding an average difference and standard deviation among these two distance

estimates of 0.006 ± 0.077. We use the average distance and the standard deviation from

color-magnitude (hereafter CM) diagrams of (g − r, r) and (g − i, r) as the mean distance

and its error, respectively.

With D estimated as above and observed Galactic longitude and latitude(l, b), we get

the stars’ position in Galactic cylindrical coordinates. We adopt a Galactocentric cylindrical
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coordinate system in which ẑ-axis towards the North Galactic Pole (b ⋍ 90◦), that is,

R =
√

D2 cos2(b)− 2DR⊙ cos(b) cos(l) +R2
⊙

θ = arctan

[

D cos(b) cos(l)− R⊙

D cos(b) sin(l)

]

Z = D sin(b)

(6)

where R⊙ = 8.0 kpc is the adopted distance to the Galactic center (Reid 1993). In the

following works, only the sample stars in the range 0.3 kpc < |z| < 1.2 kpc are used. This

z-range is limited by the bright limit of SDSS data at the low end and by the legitimacy of

treating the problem as 1-D (ẑ-direction) for large |z|.

3.1.2. Selection function

Any dynamical analysis need accurate knowledge of the spatial distribution of the

kinematic tracer. Therefore, we need not only a well-defined spectroscopic sample of

K-dwarfs with known fluxes and distances (or heights above the mid-plane) estimates, we

also need to understand their selection function (Bovy et al. 2012c), which is what we lay

out there.

In this coordinate system, each sub-sample can be divided in eight bins according to R

and ∆R = Rm+1−Rm = 500 pc. In each ∆R range, R is considered as a constant, and each

sub-sample is also divided in 12 bins in ẑ direction. The width of the z bin, ∆z ≡ zi+1 − zi,

is ∆z = 100 pc. Here m and i are indices of R and z bins, respectively. In each z-R box

νsub
⋆ (Rm, zi) =

N sub(Rm, zi)

V sub
eff (Rm, zi)

(7)

where N sub(Rm, zi) and V sub
eff (Rm, zi) are respectively the star number and the effective

volume in a (zi,Rm) box of a certain sub-sample. Because every targeted star of a given

(r, g − r) has a possibility to be in one particular sub-sample, each line of sight is a part of
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the search volume for every abundance sub-sample. In our effective volume calculation, all

lines-of-sights of all K-dwarfs are included, i.e.

V sub
eff (Rm, zi) =

nsub
∑

q=1

Veff,q (8)

where nsub is the total number of lines-of-sights of a given sub-sample and Veff ,q is the search

volume of each line-of-sight.

It is in the calculation of the effective volume that the selection function enters

explicitly. Some aspects of the SEGUE selection function are obvious. The apparent

magnitude range brackets the possible distances of K-dwarfs, and the most nearby stars

will be preferentially the brightest and coldest stars. At a given mr and g − r, the effective

survey volume is smaller for lower metallicity (hence less luminous) stars. Moreover, the

SDSS targeting strategy implies that stars at lower latitude have a smaller probability of

ending up in the spectroscopic sample, since a fixed number of targets is observed along

each line of sight. In general, we need to derive the selection function, which gives the

probability that a star of given Mr, g − r, [Fe/H] ends up in the samples, as a function of

D and (l, b)

Each SEGUE pointing which corresponds to an angular on-the-sky radius of 1.49◦is

observed with two plates, a SEGUE bright plate that targets stars with 14.0 < mr < 17.8

and faint plate that targets stars with 17.8 < mr < 20.1 (Yanny et al. 2009). In each plate,

the distribution of spectroscopic sample in a CM box that satisfies the selection criteria is

nspec(r, g − r), while the distribution of all photometric stars within the same plate that

satisfy the same CM cuts is nphoto(r, g − r). Integration of these distribution over all CM

cuts results in Nspec and Nphoto, leading to a plate weight

Wplate,j ≡
Nspec,j

Nphoto,j

(9)

where j is the index of plate. This plate weight should be a part of selection function.

Fig. 2 presents the cumulative distributions of spectroscopic and photometric samples in



– 12 –

the same selection criteria. It is clear that the selection weight for faint plates has an

apparent magnitude dependence because of the dependence on signal-to-noise ratio of the

probability of obtaining a good spectrum but no strong color dependence. Therefore, we

make an approximation for this selection function, that is, it is a function of mr.

This function is defined for all distance moduli, which is one for distance moludi that

correspond to apparent magnitude insides of plates’ magnitude range and zero for other

situation. We combine the selection function in to the calculation of Veff ,q, that is, the

average metallicity of one particular sub-sample <[Fe/H]> is adopted to estimate the

possible absolute magnitude, Mq, distance, Dq, and height above mid-plane, zq, of a given

(r, g − r). Then

Veff ,q =
π

3
·Wplate,q ·Wq ·

sin(θ)

sin(bq)
· 1
2
[cot(bq − θ)− cot(bq + θ)] · (z3upper − z3lower) (10)

where θ = 1.49◦is the diameter of SEGUE (and SDSS) spectroscopic plate (Yanny et al.

2009). Besides,

Wq =







1, for zi 6 zq 6 zi+1

0, otherwise
(11)

zupper = Min(zi+1, Dr,max ∗ sin(bq)) (12)

zlower = Max(zi, Dr,min ∗ sin(bq)) (13)

Dr,min = 10
rmin−Mq

5
+1 pc (14)

Dr,max = 10
rmax−Mq

5
+1 pc (15)

where rmin and rmax are the magnitude limits of each plate. For SEGUE bright plate,

rmin = 14.0 and rmax = 17.8, and for SEGUE faint plate, rmin = 17.8 and rmax = 20.1

(Yanny et al. 2009). In each zi bin, the error bar of the tracer number density arises from

the star count Poisson variance and it is estimated by means of Monte Carlo bootstrap ping

(§ 15.6 of Press et al. 2007).
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Fig. 3 presents the resulting (R,z) map of the tracer number density for each

sub-population. From top to bottom, those plots correspond metal-rich, intermediate

metallicity, and metal-poor sub-sample; from left to right, plots represent effective star

number, effective volume, and natural logarithm of number density in each z-R box. In

this figure, one can see that the scale-height of metal-rich sub-sample is shorter, but the

scale-length of the same sub-population is longer. This result is similar as the studies of

Galactic structure of Bovy et al. (2012c). If this number density result is projected onto ẑ

direction, we get the vertical profile of the tracer number density.

3.2. Vertical velocity dispersions

To estimate σz(z, [Fe/H], [α/H]), one could simply calculate the standard deviation

of the observed vz,i values for each z bin of each sub-population. However, this would

encompases the contribution arising from the measurement errors. Therefore, we use

maximum likelihood technique described in van de Ven et al. (2006, Appendix A) to

estimate the intrinsic velocity dispersion, corrected for all individual velocity errors.

In each z bin, the intrinsic velocity distribution of the stars is assumed as L(vz). Each

stellar velocity vz,i in this bin is the product of L(vz) convolved with a delta function which

is broadened by the observed uncertainties δvz,i. For all N stars in the bin, the likelihood

can be defined by

L (v̄z, σz, . . .) =

N
∏

i

∫ +∞

−∞

L(v)e
− 1

2

(

vz,i−vz

δvz,i

)

2

√
2πσi

dvz (16)

where L is a function of mean velocity v̄z, velocity dispersion σz and possible higher-order

velocity moments. The velocity distribution L(vz) can be recovered by maximizing the

likelihood L . To describe the velocity distribution, we use a parameterized Gauss-Hermite

(GH) series (van der Marel & Franx 1993; Gerhard 1993) because it has the advantage that
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it only requires the storage of the velocity moments (v̄z, σz, h3,z, h4,z, . . .) instead of the full

velocity distribution and the convolution of Eq. 16 can be carried out analytically. This

makes it feasible to apply the method to a large number of discrete measurements and to

estimate the uncertainties on the extracted velocity moments by means of the Monte Carlo

bootstrap method (§ 15.6 of Press et al. 2007).

Fig. 4 shows an example of a vertical velocity dispersion fit in 600 pc < |z| < 700 pc for

the three sub-populations. This figure shows comparisons of different fitting methods. Red

solid curves are the results of Gaussian fits without considering observed errors. Green and

blue curves represent three and four moments GH fits using the method described above.

For all |z| bins of all sub-populations, the vertical velocity dispersion is overestimated by 2

- 4 km/s without considering observed errors.

For the metal-rich, intermediate metallicity, and metal-poor sub-samples, the measured

σz,obs(z) are in the ranges 17 - 26 km/s, 25 - 37 km/s, and 35 - 42 km/s, showing a

increase with |z|. The σz,obs(z) of different sub-populations are slightly increasing with the

increasing of |z|. Moreover, σz,obs(z) also increases with the decline of metallicity and the

increasing of [α/Fe] (see Fig. 6, filled circles). We compare our observed σz,obs(z) with

recent study of Liu & van de Ven (2012), in which they adopted SEGUE G-dwarf of the

Solar neighborhood. They used the splits at [α/Fe]=0.25 and [Fe/H]=-0.6 to divide their

sample into three groups: group I of α-young metal-rich stars which correspond to our

metal-rich and intermediate metallicity sub-samples, group II of α-old metal-rich stars, and

group III of α-old metal-poor stars which correspond to our metal-poor sub-sample (Fig. 3,

Liu & van de Ven 2012). For the three groups, they found that the σz,obs(z) is about 20

- 40 km/s, 35 - 50 km/s, and 40 - 55 km/s, respectively (Fig. 4, Liu & van de Ven 2012).

These σz,obs(z) are in good agreement with our measurements. Bovy et al. (2012c) also

studied the vertical motions of mono-abundance sub-populations in the Galactic disk by
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G-dwarf, and found that σz,obs(z) varies from 15 − 25 km/s, 20 − 30 km/s, and 30 −

50 km/s for stars in our metal-rich, inter-intermediate metallicity, and metal-poor selection

bins, respectively, which are consistent with our measurements.

3.3. Functional forms for Kz

Given the tracer number density and vertical velocity dispersion probes, we investigate

different parameterized Kz(z) forms to solve Eq. 1 and derive the corresponding expression

for σz(z). Kz(z) is contributed both by the baryonic components and the dark matter.

According to the discussion of KG89b, all Kz(z) forms should satisfy the following

assumption: (1) the halo and disk contributions are degenerate when |z| ≪ scale height;

(2) disk contribution is approximate from a thin mass sheet when |z| ≫ scale height. We

considered five different parameterized forms of Kz(z), two of which we discuss below, while

the other three are given in the Appendix,

i) KG89 model

Kz = 2πG

[

Σ⋆

z
√

z2 + z2h
+ Σgas

]

+ 4πGρDMz (17)

ii) Exponential model

Kz = 2πG

{

Σ⋆

[

1− exp(− z

zh
)

]

+ Σgas

}

+ 4πGρDMz (18)

Heres Σ⋆ is the surface mass density in stars, Σgas = 13.2 M⊙pc
−2 is the surface mass

density of gaseous components which is taken from the disc mass model of Flynn et al.

(2006), and ρDM is the effective dark matter contribution, and zh is the scale height of mass

density.

In these models we use Σ⋆ +Σgas rather than ρdisk, because ρdisk and zh are degenerate,

i.e., one can not constrain ρdisk and zh separately at the same time.
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For the exponential model, the corresponding vertical dispersion profile can be derived

analytically:

σ2
z,sub = 2πGhsub

z

{

Σ⋆

[

1− zh
hsub
z + zh

exp(− z

zh
)

]

+ Σgas

}

+ 4πGρDMh
sub
z (z + hsub

z ) (19)

For the other Kz forms we infer σz,sub through numerical integration.

3.4. Obtaining the PDFs for the model parameters

The predictions for σz,sub(z) are based on 6 parameters for each Kz(z, R⊙) model, which

may have considerable covariance. At the same time, we have a parameterized model for the

vertical tracer density profile, and we want to derive constraints on the gravitational force,

marginalized over the scale height parameters. To explore the parameter space efficiently

and to account for parameter degeneracies, we use a MCMC approach, which provides a

straightforward and powerful way of estimating the probability distributions (PDF) for all

the model parameters and their degree of uncertainty (§ 15.8 of Press et al. 2007).

The objective is to calculate the probability of the data given the parameters, where the

‘data’ are the tracer number density and the vertical velocity dispersion profiles described

above. The probabilities for σz(z) and ν⋆(z) in each |z| bin are independent, therefore, the

logarithm of the likelihood of the data given the parameters can be written as

lnP =−
N
∑

j

ln(2πǫσz,obs,j ǫνobs,j)−

N
∑

j

1

2

(

σz,fit,j − σz,obs,j

ǫσz,obs,j

)2

−
N
∑

j

1

2

(

νfit,j − νobs,j
ǫνobs,j

)2
(20)

where N is the total number of |z| bin, ~p are the parameters of gravitational model, and

~h = [hz,1, hz,2, hz3] are the scale heights of tracer number density of different sub-populations.
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The trace number density profile is modeled by single exponential,

ν⋆,s(z) = ν0,s × exp

(

− z

hz,s

)

(21)

where the subscript s denotes the different abundance-dependent sub-populations. In order

to reduce the number of parameters by eliminating ν0,s from Eq. 21, we calculate ν0,s for

each sub-population by

∂χ2(ν)

∂ν0,s
= 0, (22)

yielding

ν0,s =

N
∑

j

exp(−zj)

ǫνobs,s,j
νobs,s,j

/

N
∑

j

exp(−zj)

ǫνobs,s,j
exp

(

− zj
hz,s

)

. (23)

All other parameters are estimated by running a MCMC chain of typically 50,000

steps, after a burn-in. In the Markov chain, the parameters of the gravitational model and

scale heights of tracer densities [~pn, ~hz,n] are chosen from a multivariate normal distribution

of [~pn−1, ~hn−1], with the covariance of [~p, ~hz] chosen to yield a total acceptance rate in the

MCMC Chain of about 20% ∼ 30%. We use the results of all steps to represent [~p, ~hz] and

their distributions, by counting the rejected steps as repeat ones. After sampling the PDF

for parameters for each Kz model, χ2
tot between the observed values (σz,obs and ν⋆,obs) and

model predicted ones (σz,mod and ν⋆,mod) is calculated to explore how the models form the

different Kz families compare:

χ2
tot = χ2

σz
+ χ2

ν⋆

=
3
∑

s=1

[

N
∑

j

(

σz,j,s,mod − σz,j,s,obs

ǫσz,j,s,obs

)2

+
N
∑

j

(

νj,s,mod − νj,s,obs
ǫνj,s,obs

)2
]

,
(24)

where s is the indices of sub-sample, j is the number of |z| bins.
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4. Results

The above procedure results in PDFs for the Kz and ν⋆ parameters, which are presented

in Figs. 5 − 10. The best fitting results and recovered parameters for all Kz gravitational

force law models are listed in Table 1.

4.1. Vertical tracer density profiles

Fig. 5 shows the fits to the vertical tracer density profiles. Filled circles are

values derived directly from observations, which are the average value of R columns

(7 kpc 6 R 6 9 kpc) of the right panel of Fig. 3. Dashed lines are the predictions for ν⋆,s(z)

(Eq. 21) for two different Kz models, and the shaded regions represent the samplings of

the last 200 steps in the MCMC chain. Red, green, and blue symbols represent metal-rich,

intermediate metallicity, and metal-poor sub-population, respectively. Each sub-population

has a simple and single exponential structure, and the scale height is increasing with the

decline of metallicity (as seen in Liu & van de Ven 2012; Bovy et al. 2012c).

The joint parameter PDFs show that the tracer scale height, ~hz is independent of the

Kz model parameters (see Fig. 9). The scale-heights we find for different abundance-select

tracer sub-populations are 230 - 260 pc, 450 - 510 pc, and 800 - 1000 pc (see Table 1), for

all Kz families. The minor differences caused by different models are within the 68% central

region of the hz PDF.

These findings are in accord with recent results by Bovy et al. (2012c) and

Liu & van de Ven (2012). In their work, they adopted G-dwarfs from SDSS/DR7 to

analysis the relationship between the distribution of Galactic disc stars and their metallicity

in each narrow [α/Fe]-[Fe/H] box. They concluded that the scale-height increases

continually from 200 pc to 1200 pc with the decline of metallicity.
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4.2. Vertical dispersion profiles

As discussed in 3.2, the σz,obs(z) shown in Figure 6, have already been corrected for the

velocity errors of the individual stars within each |z| bin. In these plots, we also summarize

σz,mod(z) predicted by different Kz models. The results reflect simultaneous fit to all three

sub-populations. If the σz,obs(z) is fitted for each sub-population separately, there is some

slight tension between the fits to the individual sub-populations and the simultaneous fit.

The difference of σz,mod(z) given by different models is smaller than the error of observed

σz,obs(z), as in the case of the scale-height predictions of vertical number density. That is,

for the three sub-population, σz,mod(z) is in the range of 16 - 20 km/s, 25 - 29 km/s, and 35

- 43 km/s (see Table 1), respectively.

We note again, that previous studies of Kz(z) by KG89a,b,c, HF04, Siebert et al.

(2003), Garbari et al. (2012, hereafter G12) and Bovy & Tremaine (2012, hereafter BT12)

had not, or could not, split their tracer samples a priori into abundance sub-bins with nearly

isothermal σz(z) profiles. In samples with a wide metallicity range σz(z) will rise with

|z| simply because the mix of mono-abundance populations will change. To disentangle a

rising σz(|z|) due to a dark matter halo from the effect of population mixing, these studies

had to model the metallicity distribution, which turned out to be an important source of

systematic errors. Fitting simultaneously to populations that have been split a priori by

their abundances, as done here, reduces this source of systematics.

4.3. The vertical gravitational force Kz

Fig. 7 shows Kz(z) implied by our fits using the KG89b and exponential families for

the ‘vertical force law’. The dashed fat lines show Kz(z) for the most likely parameters,

and the band of grey lines show a 1σ sampling of the PDF for Kz(z). For both the KG89b



– 20 –

and the exponential families of Kz(z) show a number of generic features in Fig. 7: they

start out with a finite value for small |z|, as we have fixed a prior contribution from a thin

layer of the cold gas with ∼ 13 M⊙ pc−2; then Kz rises steeply to ∼ 300 pc (reflecting the

mass scale height of the stellar disk) and then flattens out; beyond ∼ 500 pc the slower rise

in Kz reflects the dark matter halo term.

One the basis of Kz(z), we can derive the total surface density at |z| = 1.0 kpc. We get

ΣKG89
tot,|z|<1.0 kpc = 67 ± 6 M⊙ pc−2 for the KG89 model and ΣExp

tot,|z|<1.0 kpc
= 66 ± 8 M⊙ pc−2

for the exponential model. It is clear that Σtot,|z|<1.0 kpc is robustly constrained, irrespective

of the Kz model. Our modelling also constrains the mass scale height, 245+188
−245 pc for

KG89 and 200+100
−200 for the exponential model (see Fig. 8). Within these uncertainties, this

is consistent with the 180 pc from Hill et al. (1979) by analyzing A and F dwarfs and

390+330
−120 pc of Siebert et al. (2003), found by using high resolution spectral data of red

clump stars. Taken together this forms up the picture that there is a dominant mass layer

near the disk mid-plane (presumably baryonic) that is rather flat.

For comparison with literature studies, we also explicitly estimate the total surface

density of baryonic matter within |z| < 1.1 kpc, Σbar,|z|<1.1 kpc = Σ⋆ + Σgas, which we find

to be ΣKG89
bar,|z|<1.1 kpc = 55 ± 5 M⊙ pc−2, and ΣExp

bar,|z|<1.1 kpc
= 54 ± 8 M⊙ pc−2, respectively.

These values are slightly higher than 48± 8 M⊙ pc−2 derived by KG89b, but are in perfect

agreement with the value of 52± 13 M⊙ pc−2 of FF94 and 53± 6 M⊙ pc−2 of HF04.

The local mass densities of dark matter recovered by our models are ρKG89
DM =

0.0065 ± 0.0023 M⊙ pc−3 (0.25 ± 0.09 GeV cm−3 )1 and ρExpDM = 0.0060 ± 0.0020 M⊙ pc−3

(0.23 ± 0.08 GeV cm−3 ), marginalized over the other parameters.. We explored the

parameter degeneracies by MCMC (see Fig. 10), which recover the known degeneracy

11 GeV cm−3 ≃ 0.0263158 M⊙ pc−3
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between surface mass density of stars and volume mass density of dark matter: lower Σ⋆

correlates with higher ρDM, at an approximately constant total surface mass density.

5. Discussion

We have presented an analysis of the vertical Galactic potential at the Solar radius,

drawing on ∼ 9000 K-dwarfs from SDSS/SEGUE. In many ways, the analysis followed

the approach initially laid out by KG89 and implemented by several other groups in the

mean-time (Siebert et al. 2003, HF04, G12, BT12). In comparison to most previous studies,

our analysis has a number of new elements: we have a substantially larger sample than

previous analyses; we have taken explicit account of the abundance-dependent spatial

selection function of our sample for the analysis; we have simultaneously fit for several

abundance-selected nearly-isothermal sub-populations that ‘feel’ the same gravitational

potential, and we have matched the kinematics and the spatial distribution simultaneously;

we have explored to which extent the choice of the functional form for Kz affects the results.

As laid out in the previous Section, we find good constraints on Σtot,|z|<1.0 kpc and

some constrains on thickness of the disk mass layer: zh: Σtot,|z|<1.0 kpc = 67 ± 6 M⊙ pc−2

and zh . 300 pc, irrespective of the functional form we assume for Kz. This is also among

the first studies to find significant (> 2σ) constraints on the local dark matter density,

ρDM = 0.0065 ± 0.0023 M⊙ pc−3 (0.25 ± 0.09 GeV cm−3 ). Fig. 10 shows the expected

degeneracy between total surface density of visible matter and dark matter density:

lower Σ⋆ corresponds to a higher ρDM for a given total surface density. However, these

uncertainties do not include the systematic errors from misestimated photometric distances.

For example, binary contamination would make the inferred distances smaller, and the

distance estimation of An et al. (2009) which we adopted in the present work is also ∼ 9%

smaller than the one of Ivezić et al. (2008). We explore distance systematic in particular
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for their implications on the dark matter density: if a 10% distance systematic error is

considered, the infered change of ρDM is only 10%.

Overall, our results are consistent with earlier studies, as Fig. 11 shows, which

compares our inference about Kz and about the total surface density Σtot(z) with

previous studies. The value derived by KG91 is Σtot,|z|<1.1 kpc = 71 ± 6 M⊙ pc−2 and

ρDM = 0.01 ± 0.005 M⊙ pc−3. In the calculation of HF04, Σtot,|z|<1.1 kpc = 74 ± 6 M⊙ pc−2

and ρDM = 0.007 M⊙ pc−3, whereas the latter results are in a good agreement with ours.

However, G12 have re-analyzed the K dwarf sample from KG89b using the

Jeans equation (Garbari et al. 2011) and they found a much large value of ρDM =

0.025+0.014
−0.013M⊙ pc−2 (0.85+0.57

−0.49 GeV cm−3). G12 use similar data as we do in this paper,

but the sample is approximately five times smaller and the data have neither [Fe/H] nor

[α/Fe] measured; the KG89b sample, however, has a simpler spatial selection function

than the SEGUE K dwarf sample. There are a number of reasons why G12 may be

overestimating the local dark-matter density: as they do not have measurements of [Fe/H]

for the stars in their sample, their photometric distances are less accurate and less precise,

and the metallicity distribution that they adopt from SEGUE has not been corrected for

selection effects. The corrected metallicity distribution has a vertical gradient close to the

−0.3 dex kpc−1 gradient assumed by KG91 (Schlesinger et al. 2012); Appendix A of G12

shows that this leads to a slightly lower ρDM. G12 also use a strong prior for the structure

of the baryonic disk through their use of 15 isothermal baryonic components with fixed

velocity dispersions. This model requires “dark matter” to account for any imperfections in

the disk model. Most importantly, G12 cannot separate sub-populations based on elemental

abundances as we do here, such that they may potentially mistake population gradients in

σz(z) and hz(z) for the signature of dark matter.

On the other hand, our estimates are in very good agreement (Fig. 12) with the recent



– 23 –

determination of ρDM by BT12, who re-analyzed the data by Moni Bidin et al. (2012).

They used the assumption of ∂Vc/∂R = 0 to correct the model of Moni Bidin et al. (2012),

and derived a dark matter density of ρDM = 0.008± 0.003 M⊙ pc−3 (0.30± 0.11 GeV cm−3).

Fig. 12 puts the recent local ρDM estimate from Kz constraints into context. The

histogram with the gray shading in its center represents the results from G12, the one with

black is from BT12 and the one with red is from the present work (hereafter Z12). The

BT12 histogram reflects their ρDM PDF including systematic errors; for Z12 several of these

error sources have been addressed systematically, and the distance uncertainties have been

incorporated as a systematic error term in the Z12 histogram in Fig. 12. Therefore, the

results shown in Fig. 12 from Z12 and BT12 should be on comparable footing. The joint

PDF emerging from these three recent experiments is shown as the thick black histogram

in Fig 12, indicating ρDM = 0.0075± 0.0021 M⊙ pc−3 (0.28± 0.08 GeV cm−3 ).

One can put these ‘local’ estimates of the dark matter density into the context of the

expectations from the global fits of the Galactic dark matter halo: with a spherical NFW

cold dark matter density profile (Navarro et al. 1996) and the parameters of Xue et al.

(2008) (virial mass Mvir = 0.91+0.27
−0.18×1012 M⊙, virial radius rvir = 267+24

−19 kpc, and c = 12.0),

one would expect that the dark matter density at R⊙ is ρDM(R⊙) = 0.0063 M⊙ pc−3, which

is in very good, perhaps even fortuitous, agreement with our present work.

Taken together with the existing work, our results continue to point towards a picture

that the local Galactic potential is dominated by a fairly thin layer of stars and gas plus a

dark matter density that is in accord with global fits to Galactic halo.

It may seem surprising, why our limits we derive are not much tighter than those

obtained by KG89b and subsequent work, based on smaller samples. This is in good part

due to the fact that we used far fewer prior constraints on the models. E.g. we fit for

the mass scale-height of the disk (zh) rather than assume it; similarly, we fit for the scale
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height of the tracers simultaneously with the kinematic fit; and we have explored a range of

functional forms for Kz. Marginalizing over these factors, apparently leads to a seemingly

similar error on the parameters than other more restricted analysis with smaller samples.

6. Conclusion

We have analyzed the K-dwarfs from SDSS/SEGUE for determining the total surface

mass density and dark matter density in the local Galactic disc. At first, we divide our

sample into three sub-populations through their [Fe/H] and [α/Fe]. After considering

the spatial selection function, the Galactic vertical number density profiles for different

sub-populations are inferred from star counting. Secondly, we use maximum likelihood

and Gauss-Hermite series to calculate the vertical velocity dispersion profile of each

sub-population. Then different parameterized Kz forms are used to solve the ‘vertical’

Jeans equation. We fit the observed vertical number density and vertical velocity dispersion

profiles of the three sub-populations simultaneously, using MCMC to recover the PDFs

of the parameters of the ‘vertical force law’. In our results, for each sub-population,

the vertical number density is approxmately single exponential profile and the vertical

velocity dispersion is nearly isothermal. The scale height of number density profile and

the vertical velocity dispersion increase with the decline of metallicity. Presuming that

there is a thin gas layer with Σgas = 13 M⊙ pc−2, we derive a total surface mass density

of 67 ± 6 M⊙ pc−2 at 1.0 kpc from the mid-plane, of which the contribution of all stars is

42± 5M⊙ pc−2 and we infer a local dark matter density of ρDM = 0.0065± 0.0023 M⊙/pc
−3

(0.25± 0.09 GeV cm−3 ).
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A. Other Model Functional Forms for Kz

Besides the two models for Kz described in § 3.3, we also explore other three models

to determine the total surface mass density and the mass density of dark matter, with the
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purpose of checking whether the astrophysical inferences depend on the choice of these

functional forms:

iii) Error function model

Kz = 2 πG

[

Σ⋆ erf

(

z

zh

)

+ Σgas

]

+ 4 πGρDM z (A1)

iv) General model I This form is an extension of KG model. We assume Kz as the

form of

Kz = 2 πG



Σ⋆

(

zβ

zγ + zβh

)
1

β

+ Σgas



+ 4 πGρDM z (A2)

v) General Model II To reduce the number of free parameters, we set β = γ and get

Kz = 2 πG



Σ⋆

(

zβ

zβ + zβh

)
1

β

+ Σgas



+ 4 πGρDM z (A3)

We followed the same parameter estimation approach for these models and calculated

the total χ2 between observed σz,obs and ν⋆ and the model predictions. The error function

model and the general model II yield similar results for the surface density of visible matter

and dark matter density as the KG89 and exponetial models discussed in the main text.

Only the general models I, where the exponents γ and β are independent yields to a degree

of parameter degeneracy that makes the resulting Kz(z) difficult to interpret. But overall

this confirms that among physically plausible families of Kz, the particular choice matters

little.
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Fig. 1.— The unweighted number distribution of the 9157 K-dwarfs from SDSS/SEGUE

used in our analysis, shown in the [α/Fe]-[Fe/H] abundance space, with abundances taken

from the SSPP (Lee et al. 2008a,b). As volume completeness corrections have not yet been

taken into account, this distribution overemphasizes the metal-poor, α-enhanced stars (see

Liu & van de Ven 2012; Bovy et al. 2012a). Black boxes indicate the three abundance-

selected sub-populations. I: metal-rich ([Fe/H] ∈ [-0.5, 0.3], [α/Fe] ∈ [0., 0.15]); II: in-

termediate metallicity ([Fe/H] ∈ [-1.0, -0.3], [α/Fe] ∈ [0.15, 0.25]); III metal-poor ([Fe/H] ∈

[-1.5, -0.5], [α/Fe] ∈ [0.25, 0.50]).
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Fig. 2.— Spectroscopic success rate for K-dwarfs in SDSS/SEGUE, used to estimate the

selection function (§ 3.1.2). The panels show the comparison of the distribution of the

K-dwarfs that have good spectra from SEGUE (solid line) with the distribution of the

presumably complete distribution of all photometrically detected point-source in the plate

that satisfy the color-magnitude selection criteria.
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Fig. 3.— Derivation of the spatial tracer number density for each abundance-selected sub-

sample. From top to bottom, plots show the metal-rich, intermediate metallicity, and metal-

poor sub-populations, respectively. From left to right, the panels show the actually detected

number of stars as a function of galactocentric distance and height above the plane, the

effective survey volume, and the implied number density (see § 3.1).
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Fig. 4.— Example fits of the vertical velocity dispersion, shown for three abundance selected

samples in the bin 600 pc< |z| < 700 pc. For all panels, the histograms show the observed

vertical velocity distributions, the red solid curves are Gaussian fits without considering

observed errors, and the green and blue solid curves are three and four moments Gauss-

Hermite accounting for the observational errors. Without taking the individual errors into

account overestimates the vertical velocity dispersion by about 2 - 4 km/s.
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Fig. 5.— The derived vertical density profiles for the three abundance-selected sub-samples,

with the model predictions from two of our parameterized models for the of Kz force profiles

(the KG89 and exponential model, respectively; see Eq. 17 & 18). Filled circles are values

estimated directly from the observations, dashed lines are model predicted values and shad-

ows are the 68.3% errors in the recovered value of parameters. Red, green, blue symbols

correspond metal-rich, intermediate metallicity, and metal-poor sub-population, respectively.

χ2
ν is calculated from the observed ν⋆,obs and modeled ν⋆,mod (Eq. 24).
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Fig. 6.— Analogous Figure to Fig. 5, but for vertical velocity dispersions.
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Fig. 7.— The vertical dependence of the Kz force of our two fiducial models, which include

the stellar disk, a (thin) gaseous disk and a dark matter halo term. Left is the KG89 model

(Eq. 17) and right is the exponential model (Eq. 18). In both panels, the dashed fat line

shows Kz(z) for the most likely parameters, and the band of grey points show a 1σ sampling

of the PDF for Kz.
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Fig. 8.— The PDF of model parameters Σ⋆ and zh for the models in Eq. 17 & 18. On the

left, the parameters for the KG89 model, on the right for the exponential model. Yellow,

blue, and purple shades are 68%, 95%, and 99% confidence region, gray histograms are the

marginalized PDFs for the individual parameters, and red lines represent the most likely

value of each parameters.
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Fig. 9.— Analogous Figure to Fig. 8, but for the PDFs of Σ⋆ and the fitted scale height of

the tracer population of stars, hz, illustrated for the case of the metal-rich sub-population.
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Fig. 10.— Analogous Figure to Fig. 8, but for the PDFs of ρDM and Σ⋆.
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Fig. 11.— Comparison of the vertical force Kz(z) and corresponding surface mass density

Σtot,<|z| implied by the best fits of the various model families to our data. The dot ted, the

dark solid, and the long dashed red lines represent three cases of our predictions based on

KG89 model family: the one without DM (as a limiting case), the one with best fitting DM,

and the one with ρDM = 0.008M⊙ pc−3 (from BT12), respectively. The 68% uncertainty

intervals on the surface-mass density are shown at a few representative points. The |z| range

where the lines are drawn thicker represent the |z| range of our sample stars. Dashed line is

the same model but from the prediction of KG89.
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Fig. 12.— Comparison of normalized PDFs of ρDM derived by three independent works. The

dashed dot line and gray shade represent the results of G12, dashed curve and shade are

from the calculation of BT12, and red curve and shade are the results of our present work.

Thicker black line means the joint PDF emerging from these three histogram.
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Table 1: Fitting results of the two models, with Σgas = 13 M⊙ pc−2 (Flynn et al. 2006)

KG89 model (Eq. 17) Exponential model (Eq. 18)

Σ0,star [M⊙ pc−2] 42 ± 6 41 ± 5

ρDM [M⊙ pc−3] 0.0064 ± 0.0023 0.0060 ± 0.0020

zh [pc] 245+188
−245 200+100

−200

hz,1
a [pc] 259 ± 12 260 ± 15

hz,2
a [pc] 450 ± 26 465 ± 33

hz,3
a [pc] 852 ± 30 910 ± 71

σ0,1
a [km/s] 15.4 ± 1.3 15.8 ± 1.3

σ0,2
a [km/s] 23.0 ± 2.0 23.6 ± 2.0

σ0,3
a [km/s] 34.2 ± 2.2 35.8 ± 2.2

χ2
σz

25.23 26.36

χ2
ν⋆

15.80 14.54

χ2
tot 41.03 40.90

aNumber 1, 2, and 3 represent metal-rich, intermediate metallicity, and metal-poor sub-sample,respectively.
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