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Dynamical models of star clusters are presented, based on steady-state solutions of the Fokker-Planck
equation. The models are spatially limited, corresponding to the tidal cutoff imposed by the Milky Way.
Their projected density distributions are similar to those observed in open clusters, globular clusters, and
elliptical galaxies. Within each model the fractional escape rate is uniform throughout. The escape rate
from a cluster depends on the number of stars and the strength of the tidal force field; when expressed in this
way it is almost independent of core radius or central concentration. Quantitative application to actual
clusters must await a discussion of models containing a realistic stellar mixture.

I. INTRODUCTION

N the 50-yr history of dynamical studies of star
clusters a number of basic points have become clear.
First, the theory of stellar encounters has shown
[Chandrasekhar 1960, Eq. (5.227)] that the mean free
path in a star cluster is many times the radius of the
cluster. Spatial mixing is therefore much more effective
than relaxation through stellar encounters, and one
may expect the structure of a star cluster to be closely
represented by a solution of the encounterless Liouville
equation, with stellar encounters producing a slow
evolution from one such solution to another.

The general solution of the steady-state encounter-
less Liouville equation was given long ago by Jeans
(1915) : The distribution function in phase space must
be expressible as a function of the isolating integrals
of the equations of motion of a star. For the case of
spherical symmetry in position space the only known
isolating integrals for a general potential function V (r)
are the energy and angular momentum per unit mass,

E=3v+V(r), (L
h=rv,, (2)

where v is the magnitude of the velocity and v, is its
tangential component. Even so, Jeans’ theorem leaves
possible a very wide range of cluster models. One needs
only to glance at actual clusters, however, to see the
strong similarity between one cluster and another;
and indeed, Paper I of this series (King 1962) has
shown that the similarity between clusters is as strong
as external circumstances will allow it to be. The
actual clusters clearly prefer a particular set of distri-
bution functions, and it should be the task of the theory
to find and describe that set.

Since the time of relaxation at the center of a globular
cluster is a small fraction of its age [see, for instance,
Oort and van Herk (1959)], it is natural to look to
stellar encounters to provide the regularizing mechanism
in star clusters. One may approach the problem by
asking that stellar encounters determine a velocity
distribution, which then determines the spatial charac-
teristics of the model. This approach has been used
by many investigators (Chandrasekhar 1960, p. 231;

Woolley 1954; Woolley and Robertson 1956; Woolley
and Dickens 1961 ; Spitzer and Hirm 1958 ; Oort and van
Herk 1959; Michie 1963a,b; Michie and Bodenheimer
1963), each of whom chose a somewhat different velocity
distribution. The discussion that follows can be con-
sidered to be an extension of the work of Chandrasekhar
and of Spitzer and Héarm.

As a start, consider the ideal but unattainable
equilibrium distribution, a Gaussian velocity distri-
bution. This is easily shown (Chandrasekhar 1960,
p- 231) to lead to a density distribution that corresponds
to the isothermal gas sphere. This model has a total
mass that is strongly infinite; when 7 is large, the mass
contained within a radius 7 increases in direct proportion
to 7. In fact, the Gaussian velocity distribution could
have been rejected a priori; for a cluster cannot retain
stars whose velocity exceeds a finite escape velocity.
What is needed is a velocity distribution that will be
produced by stellar encounters yet drops to zero at a
finite limiting velocity. The mechanism for solving this
problem was provided by Chandrasekhar (1943a), who
introduced the Fokker-Planck equation into stellar
dynamics to calculate the effect of encounters on a
velocity distribution. To describe the velocity distri-
bution in a star cluster he found a steady-state solution
of the Fokker-Planck equation with a finite cutoff
velocity (Chandrasekhar 1943b). He used this solution
only to determine the rate of escape of stars, however,
and did not give the velocity distribution explicitly.

The problem was taken up later by Spitzer and Hirm
(1958), who tabulated the steady-state velocity distri-
bution and incidentally corrected an error of a factor
of 2 in Chandrasekhar’s escape rate. Spitzer and Hirm
attempted to use their steady-state velocity distri-
bution to derive a cluster model, but in this attempt
they were disappointed. No matter what they chose for
the central value of the potential, the density in their
model went to zero at some finite value of the radius,
contradicting their identification of the cutoff velocity
with the escape velocity from the cluster.

II. SPATIALLY LIMITED MODELS

Recent observational results suggest a re-examination
of the difficulties encountered by Spitzer and Hirm.
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It has been shown both theoretically (von Hoerner
1957) and observationally (King 1962) that a star
«cluster is not unlimited in extent; a finite boundary is
set by the tidal force of the Milky Way. The velocities
at any point in the cluster will then be correspondingly
limited, the highest velocity being that needed to reach
the cluster boundary—not the velocity of escape to
infinity. This is exactly the situation in the model
calculated by Spitzer and Hirm, which thus appears
to be a valid model for a tidally limited cluster. The
change is one of interpretation; “escape” now means
passing beyond the boundary of the cluster, since any
star that does so is quickly lost in the tidal force field.

Spitzer and Hérm gave a cluster model for only one
value of the cutoff velocity, but different cutoffs will
give rise to other models with different limiting radii.
To calculate each model two steps are required: (1)
solving the steady-state Fokker-Planck equation and
(2) converting the resulting velocity distribution into
a spatial model. The Fokker-Planck solutions are given
numerically in Paper IT of this series (King 1965). It
is shown there that those velocity distributions are well
represented by Michie’s (1963a) approximation, which
is simply the Maxwellian distribution function minus
a constant.

Although the basic method is clear, two problems
stand between the chosen velocity distribution and its
application to actual globular clusters. First, the
assumed velocity distribution at the cluster center
contains no information about anisotropy of velocities
in the outer parts of the cluster. Second, a real cluster
is a mixture of stars, each type having a different mass
and a different spatial distribution. Anisotropy and
mixture will both affect the details of any cluster model;
nevertheless, the basic physical properties of star
clusters follow from the existence of a relaxed velocity
distribution in a spatially limited configuration. The
present paper therefore confines itself to the simplest
of models, in which the stars all have the same mass and
the velocity distribution is everywhere isotropic. The
models given here represent, therefore, only a small
step forward from the gross empiricism of Paper I; and
their properties are discussed in a general rather than a
quantitative way. Later papers will fit mixed models
to actual clusters and will explore the problems of
anisotropy.

III. CALCULATION OF MODELS

To build a cluster model we start by choosing a
velocity distribution at the center of the cluster, where
relaxation is fastest. As previously suggested, let the
distribution function of position and velocity at this
point be

f©0,0)=k[exp(— ") —exp(— 70 ], ©)

where v, is the escape velocity. The energy integral

for a star is
E=32+V(r). 4)

Let V be zero at the surface of the cluster; zero energy
then corresponds to an ability barely to reach the
surface. The escape velocity at any point is thus given
by

v2=—2V. )

Above zero energy f(v) is taken to be zero, since stars
of positive energy are removed by the tidal forces.
Tidal distortion of the cluster shape is neglected; it
affects only the outermost regions and can in principle
be taken into account later as a perturbation.

In terms of E, the distribution function at the center
of the cluster is

JO)=Fk exp(2*Vo)[exp(—2/°E)—1].  (6)

But, according to Jeans’ theorem the distribution
function must be the same function of E at all points;
hence at any other point the distribution function is,
according to Egs. (4)-(6),

fr)=kexp[—27(V—=V0)]
X[exp(— ) —exp(—j2d)], ()

where v, is now the value given by Eq. (5) for the
point under consideration. Eq. (7) is extremely gratify-
ing, since the velocity distribution has the same form
as that in Eq. (3). In other words, to the accuracy of the
Michie approximation, the velocity distribution at every
point in the cluster is the appropriate steady-state
solution of the Fokker—-Planck equation, for the
velocity cutoff that correctly applies at that point.
Stellar encounters are thus automatically taken into
account everywhere in the cluster, not just at the center.

The density at any point can now be found by
integrating f(r,v) with respect to velocity :

p=/ S (r,0)4m*do, 8)
0
With Eq. (7) and the substitutions
=—=27V, ©)
n=J*7%, (10)

this becomes
w
p=2rkj® exp(W— Wo)/ (77— e " )nidy
0
; (1)
=4rkj 3 exp(W—Wy) f e~midy,
0
the last step being an integration by parts. Unfortun-

ately p is given as a function not of » but of W. Its
dependence on 7 can be found only by solving Poisson’s
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equation, therefore evaluated in the form
av 2dv G 0 -
—t— —=4xGp. s
ar? +r dr e (12) / exp(—a?)x'dx,
0
In terms of W and a dimensionless radius C . . . . .
R=r/rs, (13) which is just 1 times the integral in Eq. (17).
this is (2) The density p was available for specific values
EW 2 dW of W rather than specific values of R. The differential
—t——=—87G . (14) equation was therefore transformed so as to make R
dR? R dR the dependent and W the independent variable.

Substitution of power series for the variables shows
that the scale factor 7. will be very close to the “core
radius” in the empirical formula of Paper I, provided
the central value of V2V is taken to be —9. Thus
871G 1% 2p0=9, (15)
and
a@aw 2 4dw p
=0, (16)
dR* R dR po

so that only relative values of the density are needed.

In the actual computation the first step was to
tabulate the quantity

w
\I/=eW/ e~midy,
0

which is proportional to the density. A model could
then be computed by choosing a value of W, the
central value of W. The ratio p/po was formed for all
values of W, and Poisson’s equation was solved starting
at R=0. The other initial condition needed is dW/dR=0
at R=0; substitution of power series in Eq. (16) shows
that this implies

(7)

2 dw

lim — —=—6. (18)
20 R dR

This procedure has the advantage of being completely
straightforward : the surface occurs at the value of R
where W (and hence p) reaches zero, and every inte-
gration of Poisson’s equation leads to a valid model. The
larger the value of Wy, the larger is the surface radius;
as Woy— o the wvelocity distribution approaches
Maxwellian, the surface radius increases without limit,
and the model approaches the isothermal sphere.

The final step in the computation was to project
the spatial densities onto the plane of the sky, for
comparison with observation. This is far preferable
to converting the observational results to space densi-
ties, since the conversion process would greatly magnify
the observational errors.

Several points are worth noting with regard to the
computational procedure:

(1) The quadrature in Eq. (17) is difficult to carry
out in that form, since the second and higher derivatives
of n? are infinite at the lower limit. The integral was

(3) Since R becomes very large in some models,
1/R was used instead in the outer parts. Near the
center R was replaced by R®. The equations used were

@?2X 3/7dX\? 9 p 7dX\?
AL o
aw? 2\dW 4 po\dW
2P p 1 7dP\?
— =9 ~(—) : (20)
dW?  po PA\dW
where
X=R (21)
P=1/R. (22)

(4) The surface density, projected on the plane of

the sky, is
Be p(S)SdS
s(R)=2 / it
r ($*—R)?

(23)
pdY

where X=R? V=S? and subscript ¢ refers to values
at the surface. This quadrature is awkward in two
ways: the upper limit can be very large, and the
integrand is infinite at the lower limit. The upper limit
was therefore normalized by making the transformation

V—X
p=— (24)
147
so that
1 1
oc(R)=— / (14-Y)3prdt, (25)
1+X Jo
where
V=(+X)/(1—1). (26)

The upper limit has been extended to ¥'= o, so that p
must be taken to be zero beyond ¥ =Y. The difficulty
at the lower limit was handled by using the quadrature
formula

t1
/ ()t
0
31— 5t 12

4 i
=—t1%[<5———) eot et <p2:l (27)
15 2 2 (tr— t2) ta (h—' t2)
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age . log f/fo
F1c. 1. Surface densities in ¢

single-mass models. Arrows indi-
cate logr;. These curves may be
used directly with inch graph -
paper.

2

-4 [~

for the first integration step. This formula fits a second-
degree polynomial to values of ¢ at t=0, #;, and #; and
absorbs the awkward factor % into the integration.
(5) Fifty steps in W were found to give adequate
precision. A Fortran program run on an IBM 7094
produced nine models per minute. The major expendi-
ture of computing time was in the projection process.

IV. RELATION TO ACTUAL CLUSTERS

The resulting models are modifications of the iso-
thermal sphere. Near the center their densities are
very close to isothermal, but eventually they fall below
the isothermal curve and drop to zero. The projected
densities are shown in Fig. 1, where the surface density
is called f and the units of f and 7 are the central value

T I T ] LI T T I T
2 PS-4321 -
I 8 min.
I~ log f
(stars/sq. min)
[} ot —
o ‘kq'd — === —
b'kg'd "
| b —
log r
- (minutes) —
1 | 1 ] 1 ] 1 | 1
04 08 1.2 16

Fi16. 2. Comparison of star counts in M13 with theoretical
cxllrve for log(r:/r.)=1.50. Maximum-exposure 48-in. Schmidt
plate.

fo and the core radius 7., respectively. The curves are
labeled with values of logry/7.. For easy comparison
with observations the figure has been printed on such a
scale that the horizontal and vertical units are exactly
1.25 and 0.5 inches.

The curves of Fig. 1 supersede the purely empirical
curves given in Fig. 5 of Paper I (King 1962). In the
range Wo<7, which is the range covered by the obser-
vational checks in Paper I, they agree closely with the
empirical family of curves and fit the observations
equally well. Examples of the observational fit in
high and low-concentration clusters are shown in Figs.
2 and 3. The data are star counts on plates taken with
the 48-in. Palomar Schmidt. The vertical lines indicate
statistical mean errors, according to the Poisson
distribution. (In Fig. 2 the value of 7, is not shown,

— PS-4331 —

4 min.

f— log f
(stars /sq. min.)

b'kg'd----

- | log r ——>
(minutes)

1 ] | 1 ] 1 | ] |
-0.4 0 0.4 08 1.2

Fi16. 3. Comparison of star counts in NGC 5053 with theoretical
curve for log(r:/7:) =0.75. Medium-exposure 48-in. Schmidt plate.
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since for these exterior counts the fitting is rather
insensitive to the value chosen for the core radius. The
value used for 7, was, in fact, determined from photo-
electric surface photometry.)

For higher values of Wy the theoretical and empirical
curves differ, in that the theoretical curves go through
an inflection and thereafter have an asymptotic slope
of —1 rather than —2. This difference does not,
however, indicate a disagreement between theory and
observation. The central concentrations involved are
in fact higher than those observed in any star cluster;
hence the “empirical” curves in this range were not
based on fact but rather on a misguided extrapolation.
To study such high central concentrations obser-
vationally we must examine the elliptical galaxies,
whose brightness profiles were found in Paper I to
disagree with the high-concentration extrapolation of
the empirical curves. When comparison is made instead
with the theoretical family illustrated in Fig. 1, the
answer is very different. Figure 4 shows a comparison
with the photoelectric observations of Miller and
Prendergast (1962) in NGC 3379—the most reliable
study yet made of surface brightnesses in an elliptical
galaxy. Most of the points are directly measured
surface brightnesses in yellow light, but a few have
been converted from blue measures. The ellipticity
has been compensated by reducing all distances along

IVAN R. KING

the E-W line by Alogr=0.025 and increasing all
distances along the N-S line by the same factor. In
the central regions the angular resolving power of the
photometer apertures is too low to sketch a brightness
profile directly; instead central magnitudes measured
through concentric apertures of various sizes have been
converted to local surface brightnesses.

It is clear from Fig. 4 that a star-cluster profile
approximates the observed distribution of light in
NGC 3379. Such a similarity is surprising, however;
for the cluster profiles have been shown to result from
relaxation, while the relaxation time in NGC 3379 is
longer than 102 yr. It was suggested in Paper I that
an alternative and much more rapid relaxation may
have taken place in the initial settling down of the
system. The tidal limitation could then be imposed at
any later time; the only requirement for the present
models is that the cutoff be imposed on energies rather
than positions—which is indeed a characteristic of a
tidal force. (Strictly, the cutoff in these models should
also be gradual rather than sharp; but the difference—
discussed in the following section—would be very
difficult to observe in the faint outer envelope of an
elliptical galaxy.)

The comparison with observation need not be
pressed further here; the important point is that star
clusters and spherical galaxies both resemble cluster

4k

! | 1 ! 1 1 |

0 I

F16. 4. Comparison of surface brightnesses in NGC 3379 with theoretical curve for log(r./7.) =2.20. Ordinate: logarithm of yellow
surface brightness (unit is 16m91/sq sec) ; abscissa: logarithm of radius in seconds. Open circles are values calculated from concentric

circular measurements, dots are point measurements in the yellow, and crosses are blue measurements converted by assuming B—V
6.
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models of the sort described here. Conservatively then,
the models at least provide a convenient set of interpo-
lating curves; and with a shade more boldness one
may expect the theoretical models to share some of the
dynamical characteristics of real stellar systems.

A final point in this observational discussion is a
comparison with de Vaucouleurs’ law (1959), which
has been suggested as a general law for surface bright-
nesses in elliptical galaxies. Figure 5 shows de Vau-
couleurs’ law, along with the modified isothermal model
that has log(r;/r.)=2.20. The region covered by
existing observations of elliptical galaxies is roughly
0<log(r,/r.)<2; over this range the two curves are
quite similar. In the light of the present discussion,
de Vaucouleurs’ law appears to refer to a particular
central concentration and should be appropriate only
for galaxy profiles that have that concentration. For
lower central concentrations, in fact, de Vaucouleurs’
law is known to fit poorly (Hodge 1961a, b, 1962,
1964; Rood 1965). Furthermore, de Vaucouleurs’ law
does not appear to fit the center of any stellar system.

V. COMPARISON WITH OTHER MODELS

Many of the characteristics of the models described
here follow from the mere fact that their velocity

I 2

F16. 5. Comparison between de Vaucouleurs’ law and a modified isothermal model. Characteristic parameters of each curve are marked.

distributions are nearly Gaussian. At the same time
their appearance must depend in some way on the
exact nature of the non-Gaussian deviations. One
question is the shape of the velocity cutoff. Steady-state
relaxation theory predicts a distribution that drops
to zero continuously with finite slope, but arguments
have also been presented for a distribution that is
truncated at the cutoff velocity (Woolley 1961 ; Woolley
and Dickens 1961). To examine such models the
computations of Sec. ITI were repeated for a truncated
Gaussian distribution. In that case the first form of
Eq. (11) lacks the quantity =" in the integrand, and
Eq. (17) is replaced by

w
\P=6Wf e~midy,
0

where a constant numerical factor has again been
dropped. By way of further exploration, still another
set of models was calculated from a velocity distri-
bution in which the cutoff is even more gradual than
that of the steady-state distribution. This sort of
cutoff can be achieved by subtracting from the Max-
wellian ¢" a function that makes both the distribution
function and its derivative zero at n=W. For one such

(28)
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function the relative densities are then given by

p=2mkj* exp(W—Wy)
w
X / Lem—e W (1+W—n) Inidy. (29)
0

If the second term is integrated directly and the first
term is integrated twice by parts, the result is

8 w
p= igwkj_?’ exp(W— Wo)/ e dn. (30)
0

A full set of models was computed for each of these
modified cutoffs. As expected, the central profiles were
closely similar, the differences appearing only in the
shape of the density dropoff near the spatial limit.
A comparison for one value of Wy is given in Fig. 6.

The models based on a truncated Maxwellian distri-
bution are the same as those of Woolley and Dickens
(1961). Their £ is the same as W, of this paper, while
their linear variables z.and @ are equal to 3R. Woolley
has argued (1961) that the cutoff region of the velocity
distribution contains too few stars to matter, but this
contention is not borne out by Fig. 6, in which the
curves separate widely within the region that is now
covered by star counts on long-exposure plates. This
difference is further illustrated by Fig. 7, in which the
same count shown in Fig. 2 has been fitted with a

curve from the family based on a truncated velocity
distribution. The fit is significantly less good.

As a by-product of this manipulation of cutoffs, one
can derive the variation of velocity dispersion with
distance from the cluster center. With the steady-state
velocity distribution, Eq. (7), it is easily found that
the mean square velocity at any point is given by

2 2,/ et
W 20 . 31)

(1}2> W 5 w
/ e iy
0

These integrals were tabulated in the course of the
cluster-model computations; values of (12)/(1?)w- are
given in Table I.

A more serious change in the velocity distribution
would be to give up the simplification of isotropy.
Whether or not this is necessary is not at all clear;
intuitive theoretical arguments can be given on either
side. Against isotropy is the cosmogonic hypothesis
that stars in the outer parts of a cluster have been
ejected from the central regions and are therefore in
predominantly radial orbits. Relaxation in the outer
parts is too slow to change many of these into orbits
of higher angular momentum. In favor of isotropy it
may be argued that we do not know that the clusters
were formed in this way. Furthermore the galactic

log f

Fi16. 6. Effect of velocity cutoff on surface densities. Left to right at bottom end, curves
correspond to truncated, linear, and quadratic cutoffs, respectively.
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tidal force, which strongly affects motions in the outer
parts of a cluster, does not conserve angular momentum
and can therefore be expected to randomize the distri-
bution of angular momenta of outlying stars.

Michie and Bodenheimer have calculated a set of
cluster models based on anisotropic velocity distri-
butions (Michie 1963a ; Michie and Bodenheimer 1963).
Their models are spatially infinite, but the densities
in the outer parts drop below that of the isothermal
sphere because the velocity distribution becomes more
and more radial. In a later paper (1963b) Michie adds
the effect of a tidal cutoff. These limited models differ
from those of the present paper in having an additional
factor—anisotropy—that pulls the density down in the
outer parts. In fitting to an observed cluster profile,
part of the outer dropoff of density is therefore provided

STRUCTURE OF STAR CLUSTERS 71
T T T T T T T T T
2= PS-4321 —
T 8 min
B log f N
(stars/sq. min.)

N —
o b'kg'd === —
) . " —

log r
- (minutes) =1
1 1 1 | 1 | 1 ] 1
0.4 08 1.2 18

by the anisotropy; the tidal part of the dropoff is then
correspondingly less severe, and a larger tidal limit is
deduced. If the tidal limit were firmly known, the
degree of anisotropy could be determined, but this is
unfortunately not possible. Thus Paper I of this series

TasLE 1. Effect of cutoff on mean-square velocity.

w @)/ @)W oo w @)/ @)W e
0.5 0.138 4.5 0.838
1.0 0.264 5.0 0.877
1.5 0.383 6.0 0.931
2.0 0.489 7.0 0.963
2.5 0.582 8.0 0.981
3.0 0.663 9.0 0.990
3.5 0.733 10.0 0.995
4.0 0.790

fits star counts in the galactic clusters NGC 7789 and
M67 with models based on isotropic velocities; on the
other hand Michie (1963b) chooses somewhat larger
tidal limits and fits the same counts with models of
rather marked velocity anisotropy. At best an upper
limit can be set to the degree of anisotropy, based on
the largest admissible value of the tidal limit. For the
low central concentrations shown by galactic clusters
this limit is very liberal, but it may be hoped that the
higher central concentrations found among globular
clusters will allow a better discrimination between tidal
dropoff and anisotropy dropoff and thus allow a useful
upper limit to be set on the anisotropy.

For effective comparison Michie’s variables must be
related to those of the present paper. To do this, Eq.
(15) can be combined with Eq. (5.5) of Michie’s Paper
I (1963a) to show that the unit of Michie’s radial
variable z is (7%/6)7,, or 0.2227,.

The most realistic of previously published models
is that of Oort and van Herk (1959), which contains
a mixture of stellar types. However, since the present
paper considers only single-type models, discussion of
their model will be deferred to a later paper, in which
mixed models will be presented.

F16. 7. Same star count as Fig. 2, fitted with a
truncated velocity distribution.

VI. ESCAPE RATE

Given a dynamical model of a star cluster, we can
calculate the rate at which stars escape from the
cluster. For actual clusters the models used should
contain a realistic mixture of stellar types; hence
calculation of actual escape rates is deferred to a later
paper. The present simplified models can be used,
however, to explore some basic questions concerning
escape rates: (1) How does the escape rate depend on
the parameters of the cluster model? (2) In a given
model, how does the escape rate vary with position in
the cluster? (3) How does the escape of stars cause the
cluster to evolve?

The escape rate is implicit in the velocity distri-
butions on which the models are based. These velocity
distributions arose from a separation of variables in the
time-dependent Fokker-Planck equation. To each
velocity distribution corresponds an eigenvalue A,
which also appears in the time equation [cf. Eq. (5)
of Paper II7]:

ldv A

A (32)
vdt Tr

Since we are no longer dealing with a system of constant
density, » is here taken to be the star density at a
particular point of the cluster. At that point the frac-
tional loss rate per unit time is given by Eq. (32), with
the value of A that corresponds to the velocity distri-
bution at that point. The time scale is given by the
reference time

Tr=[27Gm?vj* In(3n) T (33)
(The subscript zero of Paper I1, which referred to stars
of the dominant type, has been dropped here, where
all stars are of a single type. In the present paper
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subscript zero refers to values at the center of the
cluster.)

In their basic study of velocity distributions Spitzer
and Hirm (1958) set the argument of the logarithm
in Eq. (33) equal to half the total number of stars in
the cluster, basing their choice on an implied argument
that involves the application of the virial theorem to
the whole cluster. In the present case, however, the
use of a detailed dynamical model allows this choice
to be somewhat sharpened. The factor in question
arises in the evaluation of the encounter integrals
(see, for instance, Rosenbluth, MacDonald, and Judd
1957). The integrals diverge mathematically; hence
physically one cuts them off at an upper limit, which
is now recognized (Cohen, Spitzer, and Routly 1950)
to be the distance out to which the star density is the
same in all directions. If this distance is called D, then
the argument of the logarithm is

a=D(i?)/2Gm. (34)
Since (22)=3/242, application of Eq. (15) gives
a=37voDut . 35)

A good measure for the distance scale of density
changes in our models is the core radius; hence we set
D,,=r., so that

(36)

Thus # in Eq. (33) can be interpreted as an effective
number of stars in the core of the cluster—specifically
the number of stars in a homogeneous sphere of radius
7. and density »,.

In Paper IT, Tables I-X gave values of A as a function
of the mass ratio—here equal to unity—and the cutoff
velocity «.= juv.. But according to Egs. (5) and (9),
the value of 2 at any point of a cluster model is simply
W. The eigenvalues N\ depend strongly on WW; in fact it
can be verified that the values for unit mass ratio are
well approximated by the formula

A=4.95¢"",

a=2rvyrl.

@37

[This is very similar to Eq. (19) of Paper II.] From
W=3 to W=10 this formula is correct within 109,.

Consideration of Eq. (37) shows that the escape
rate from a star cluster depends strongly on its central
concentration. The higher the central concentration,
the larger the central value of IV, and consequently the
smaller the central value of A. If two clusters have
identical cores—and hence identical central values of
Tr—the cluster with a more extended envelope will
lose stars much more slowly. This behavior makes good
sense physically, from either of two points of view.
First, a low-concentration cluster is one in which tidal
influences reach far in; hence stars find it easier to
escape. Second, a spatially extended envelope corre-
sponds to a long tail on the velocity distribution. Such
a distribution is already close to Maxwellian, hence

further relaxation causes changes that are quanti-
tatively only small ones.

Equation (37) shows that not only does X vary from
one cluster model to another; within a given model it
varies with position. So also does T'g; in this case the
variable factor is the number density », which is of
course equal to p/m. In the expression for density, Eq.
(11), when W is large the integral tends to the constant
value I'(§), with the result that p«e®. The reference
time is then proportional to ¢=%, and the ratio \/Tr
in Eq. (32) is independent of position. That is, every
part of the cluster loses the same fraction of its stars
per unit time.

Strictly speaking, this conclusion applies only to
large values of W. In fact, however, direct examination
of numerical values shows that within a given model
N/Tg is 209, higher at W=3 than at W=10—a span
over which A and T'g individually vary by a factor of
1000. For smaller values of W this constancy breaks
down—but so does our entire mechanism for calculating
escape rates. The velocity distribution given by Eq.
(7) is no longer a good approximation to the steady-
state distribution ; and, more fundamentally, the actual
relaxation process is no longer well approximated by
the simplification of using a Gaussian velocity distri-
bution for the stars encountered. The best one can say
is that the conclusion /T g= const has the same range
of validity as the basic theory.

Within this range of validity the cluster models are
thus dynamically self-consistent in a much stronger
way than might originally have been anticipated. The
only assumption made was that the wvelocity distri-
bution satisfies the steady-state Fokker-Planck equa-
tion locally at the center of the cluster. It thereupon
turned out that the corresponding velocity distributions
gratuitously satisfied this equation everywhere else in
the cluster. Furthermore, the fractional loss rate has
turned out to be everywhere the same, so that the loss of
stars does not cause any immediate change in the shape
of the density distribution.

One cannot argue that these models are completely
steady, however. The loss of stars causes a change in
the cluster’s gravitational field, and a density re-
adjustment ensues. On this largest scale, in fact, no
strictly steady state is possible at all. The equation
that describes the entire cluster—the Liouville equation
with Fokker—Planck terms appended—is a mixture of
terms of first and second degree, and the variables thus
cannot be separated. What the cluster presumably does,
however, is to settle down into a state that is as close
as possible to steady, thereupon evolving quasi-
statically through a sequence of such states. The
regularities found observationally in Paper I indicate
that such a sequence exists, while the observational
and theoretical arguments given in the present paper
suggest that the real sequence resembles the sequence
of models described above.
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VII. DYNAMICAL EVOLUTION

If we assume the existence of a unique sequence of
cluster models, then the evolution of an individual
cluster can be followed as it progresses down the
sequence. The loss of stars causes (a) a decrease in the
mass M, (b) a decrease in 7,, which is proportional to
M?#) and (c) a calculable change in the total energy of
the cluster. The problem is then simply to find the
model that fits the changed values of M, r,, and the
total energy H.

For this purpose the mass and potential energy
were calculated for each of the present models. The
quantities calculated were

R )
p= / ~ 4rRR (38)
0o po
and
R: 0
B= / W — 4w R%R, (39)
0 Po

where R, is of course the same as the central concen-
tration ¢=r7,/r,. The actual mass is clearly

M= Porcaﬂ- (40)

The actual potential energy is somewhat more compli-
cated; first, integrating the potential with respect to
mass gives twice the potential energy, since every
interaction is thus counted twice. Hence the potential
energy is

1 pre
U =5 / A7V’ pridr, (41)
0

where V' is the true potential, equal to zero at infinity.
In the model calculation a shifted potential V' was
used, however, with its zero at r=7;, at which point
V'=—GM/r;. Hence

V=V"+GM/r.. (42)

With the use of Egs. (9), (13), (15), (38)-(40), and
(42), Eq. (41) now becomes

=~ (k+3)GM?/r,, (43)

where
k= (2w/9)Bc/u2.

Values of ¢, i, 8, and % are given in Table II for various
values of W,.

The change in the cluster’s energy results from the
tidal assistance given to the escape of stars. In the
present idealization of tidal effects, the tidal force does
not affect the interior of the cluster; it simply removes
any star that reaches the tidal limit. The tidal force
thus contributes an energy

(44)

dH=— (GM /r))dM (45)

TasiLE II. Characteristics of cluster models.

Wo c loge " B8 k 1/ et
2.5 3.891 0.590 3.934 5.553 0.97 2.083 7.30
3 4.699 0.672 5.182 8.721 1.07 3.703 6.25
4 6.920 0.840 8.102 17.81 1.31 11.03 4.71
5 10.70 1.029 11.81 31.34 1.68 31.40 3.83
6 17.99 1.255 16.90 50.73 2.23 87.42 3.59
7 33.71 1.528 24.93 78.90 2.98 240.4 4.06
8 68.15 1.833 39.89 122.5 3.66 657.2 5.41
9 131.4 2.119 69.89 195.7 3.67 1791 7.04
10 223.7 2.350 125.7 324.2 3.20 4874 7.68
12 548.2 2.739  369.2 927.5 2.60
15 2272 3.356 1576 4246 2.7

to the escaping mass —dM. Since the virial theorem
states that H=1U, Eqgs. (43) and (45) give

dU/U=2dM/(k+3)M, (46)
and differentiation of Eq. (43), with r,« M3, leads to

dk/dM = (—10k+7)/6M. 47
Rearrangement of Eq. (47) in the form
d(k—0.7)/dM = — (5/3) (k—0.7)/M (48)

then shows that for a cluster subject only to tidal
forces and internal relaxation the quantity k—0.7
varies as M55, Since for all reasonable cluster models
k is greater than 0.7, this means that k2 must increase as
M decreases. The change in % gives, via Table II, the
change in central concentration, as measured by either
the theoretical Wy or the observational c.

The exact functional dependence of £ on M must
not, however, be taken seriously, since this simple
treatment has omitted other dynamical phenomena
that affect the energy balance of the cluster—particu-
larly mass loss from stellar evolution and tidal shocks
due to passing large masses. Both these phenomena add
energy to the cluster and tend to counteract the con-
tractive tendency just found. For any specific cluster
these energy effects must be added into an equation
similar to Eq. (46); the result, corresponding to Eq.
(47), will show whether % increases or decreases,
depending on the relative sizes of the various effects.
The general conclusion, in any case, is that the central
concentration of the cluster will change in a way that
is determined by the energy balance; the nature of
the change can be found by a procedure of the sort
demonstrated.

A related question is how the rate of evolution of
the cluster will change as stars are lost. According to
the traditional picture of cluster evaporation (Gurevich
and Levin 1950; King 1958; von Hoerner 1958) any
contraction of the cluster will sharply speed its loss
of stars, since the contraction greatly shortens the
relaxation time. The present models show this con-
clusion to be incorrect, however, because of the large
compensating changes in A. To see this, we show, in as
clear a way as possible, how W, affects the escape rate
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N/Tg. Combination of Eqs. (33), (15), and (40) gives
Trt=(27/8)(G/2x) m In(Gn.) (w/M)¥r; %, (49)

where 7, was shown in the preceding section to be the
number of stars in the central core of the cluster. The
individual mass m can now be written M/n and the
limiting radius introduced via

re= (M /x)%. (50)

The constant x expresses the strength of the tidal
force; for a globular cluster

k=3.5M,/R,? (51)

(Paper 1, Sec. IIT), where M, is the effective attracting
mass of the Galaxy and R, is the cluster’s distance of
closest approach to the galactic center. For an open
cluster

k=4wd /G, (52)

where w is the angular velocity of rotation and 4 is the
first Oort constant. Elimination of # and substitution
for M from Eq. (50) now give Eq. (49) the form

N Tr=(27/8)(G/2m)}n™ In(Gneo)lulel,  (53)

where X is to be evaluated at the cluster center. The
loss rate thus depends on the number of stars, the
strength of the tidal force, and Auic, which is a pure
function of W,. For the range of concentrations covered
by star clusters, the last column of Table IT gives values
of Mu¥c}, which can be seen to depend very little on W,.
Thus during the evolution of a cluster the rate of loss
of stars changes very little with time.

This constancy of loss rate has, in fact, an even greater
generality. Eq. (53) is not restricted to the evolution
of a single cluster; it applies to any cluster at any time.
Thus within a wide range of central concentrations the
escape rate of stars from a cluster depends only on the
number of stars and the tidal field in which the cluster
finds itself. There is no obvious physical reason for this
simplicity ; it seems to arise from a fortuitous compen-
sation of opposing effects.

Some further interesting conclusions can be drawn
from Eq. (48) and the values of & in Table II. First,
the model changes rapidly as stars are lost. In the
middle range of central concentrations a loss of about
259, of the stars will cause W to increase by 1. (Stellar
mass loss and tidal shocks will reduce this rate, how-
ever, and may even reverse it.) Second, for central
concentrations somewhat lower than the lowest ob-
served, k£ will become less than 0.7 and the escape of
stars will have an expansive effect. For such a cluster
all evolutionary processes are expansive; the cluster
presumably grows until it becomes completely unstable
tidally.

The third conclusion follows from the behavior of
k at high W,. The potential energy parameter % reaches
a maximum for a value of W, between 8 and 9; there-

after it oscillates and approaches (as shown by compu-
tations of models up to Wy=30) an asymptotic value
that appears to be equal to 8x/9, or 2.793. In this range
of high central concentration an evolving cluster cannot
continue to satisfy Eq. (48). Physically speaking, both
the mass and the potential energy are now determined
almost completely by the envelope, and no further
changes in the core will make any appreciable differ-
ence. It might currently be fashionable to predict the
consequent collapse of the core, but it is more reasonable
instead to expect a readjustment of the envelope in
such a way as to make the potential energy more
strongly negative. It thus appears that for the highest
central concentrations the models discussed here can
no longer be the correct evolutionary sequence—
although the profiles of elliptical galaxies suggest that
the difference is not great. The difference may result
from anisotropy of the velocity distribution—which
would steepen the density gradient in the right sense—
or it may require a more basic revision of the theory.

VIII. SUMMARY

From the foregoing discussions a picture emerges
of the basic dynamics of star clusters. The dominant
process is relaxation, which brings the internal velocity
distribution close to a Gaussian form. As a result the
central cores of all clusters have identical profiles,
except for the obvious scale factors of radius and star
number. The envelope of a cluster, by contrast, is
molded by the tidal force in which the cluster finds
itself. Specifically, the profile of the envelope is deter-
mined by the ratio of the tidal limiting radius to the
core radius—a quantity that may be referred to as the
central concentration. Except for scale factors, clusters
differ only in central concentration.

The spatial limitation corresponds to a cutoff in the
velocity distribution, at a velocity less than that of
escape to infinity. Continuing relaxation and escape
make the velocity distribution a near-Gaussian steady-
state solution of the Fokker-Planck equation. Velocity
distributions of this type correspond spatially to
modified isothermal spheres, with the central concentra-
tion related to the location of the velocity cutoff. These
models have density profiles that resemble those ob-
served in open clusters, where the central concentrations
are always low, and globular clusters, where the concen-
trations range from low to high. Elliptical galaxies also
appear to fit the same models, even though their relaxa-
tion times are too long to account for the similarity.

A modified isothermal model is very nearly stationary
overall. Not only is the velocity distribution steady at
the cluster center; it is steady everywhere, and the
fractional loss rate is the same everywhere. Evolution
occurs only as a reaction to the decreasing total number
of stars. The observed prevalence of these models
suggest that evolution is along the sequence that they
represent. At the very highest central concentrations,
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however, the sequence probably fails to represent actual
physical systems correctly.

The rate of escape of stars follows directly from the
models. An extensive envelope inhibits escape, but a
small core speeds relaxation. The two effects tend to
compensate, resulting in an escape rate that depends
on the number of stars in the cluster and the strength
of the tidal field but is almost independent of central
concentration. It follows as a corollary that the escape
rate changes very little with time.

As time passes, the central concentration of a cluster
changes in a way that is determined by gains and losses
of energy. Escape of stars makes the core contract,
while encounters with interstellar clouds and mass loss
from stellar evolution both cause it to expand. The
balance between these contractive and expansive
forces determines the direction and rate of evolution.

These are the general dynamical properties of star
clusters, as they follow from the arguments given in
this paper. Their application depends, however, on the
use of realistic mixed models, fitted to observations of
actual clusters. Later papers of this series will continue
in that direction.
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