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Stellar Systems vs. Gases

Similarities

>

Comprise many
interacting point-like
objects

Can be described by
distribution functions of
position and velocity

Obey continuity
equations (are not
created or destroyed)

Interactions and the
systems as a whole obey
conservation laws of
energy and momentum

Concepts like pressure
and temperature apply

Differences

» Relative importance of short (gas) and

long-range (stellar systems) forces
Stars interact continuously with entire
ensemble via long-range force of gravity

Gases interct continuously via frequent,
short-range, strong, elastic, repulsive
collisions

» Stellar pairwise encounters are very rare

» Pressures in stellar systems can be

anisotropic

Stellar systems have negative specific heat
and evolve away from uniform temperature

Gases evolve toward uniform temperature
and have positive specific heats
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Potential Theory

Gravitational potential is a scalar field whose gradient gives the net
gravitational force (per unit mass), a vector field.

o0 /
00 =6 [ fe = S0 G/ e [ e
F(r) _dv ,rfr O GM(r) Vi (r)?
m dt__V(D G/ v — = - 2 r

By convention, ®(r) — 0 as r — oo. Out5|de a spherically symmetric
object, ®(r) = —GM/r. Inside a spherically symmetric uniform density
shell, ®(r) = 0. The divergence of F gives Poisson's equation:

1
—;V -F(r) = V?®(r) = 47Gp(r).
Using Gauss' Theorem,

1 1
47TGM:47TG/p(r)d3r:_f/V.F(r)d3r:_f/F r
14 m Vv m A

Gravitational potential energy (last equality for spherical symmetry)

fl i 377L ‘ 2.3 / M(r)
W—Z/Vp(r)d)(r)d r= 87TG/V\V<D|dr_ G e dM.
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Analytic Density-Potential Pairs in Spherical Symmetry

» Homogenous sphere (radius R, p(r < R) =
Inside: ®(r) = —27G(R? —r?/3), F(r)= —G/\/l( )/r?
V2 = GM(r)/r =4rGpr?/3 (w(r) = constant).
» Singular isothermal sphere (p(r) = por2/r?)
O(r) =4nGpor2Inr+ C, M(r) = 4drporir, V2 =4rGpor?.
> Power law (p(r) = po(r/ro) *,2 < a < 3)
CD( ) - _47TGPO (r/ro)2 a/[( )(a - 2)]7
M(r) =4nGpor (r/ro)3 “/(3 —a).
» Hernquist (p(r) = Ma/[2mr(r + a)*])
O(r) = —GM/(r+a), M(r)=Mr?/(r+a)”.
» Jaffe (p(r) = Ma/[4nr(r + a)?])
®(r)=—-(GM/a)In(1+a/r), M(r)=Mr/(r+ a).
> Plummer (p(r) = 322 M /[4r(r? + a%)°/?])
O(r) = —GM/VrZ+ a2, M(r) = Mr3/(r? + a?)3/2.
» Navarro-Frenk-White (p(r) = pya®/[r(r + a)?])
®(r) = —4rGpnadr~tin(l +r/a),
M(r) = 4rpya3[In(1 4+ r/a) — r/(r + a)].
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Density Laws
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Orbits of Single Stars

HV+V<D( )} _o_th 24 o(r )}

Star's energy £ is therefore constant, where

S:gv2+m¢(r): KE + PE.

A star can escape only with £ > 0 since KE> 0, thus

V2 _(r) = —20(r).

esc
Changes to the star's angular momentum £ = mr x v:

dL dv

— = —mrxv=mrx — = —mr x VO(r).

dt  dt dt (r)

For spherical symmetry, £ is therefore conserved.

In a stellar system, individual stellar energies or angular momenta are not
conserved, but their sums are.
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The Virial Theorem

Newton's Law of Gravity d(mv)/dt = —GmMr/r3.

d Gm;m;
Z ‘ — I‘J').

JF# e rj|3

d G

Rl - ZE SR B
d G

Z E(mjvj ZZ |r,,i :njp ri ZF R

J i J#i
d dzl
Z[,:dt mjvi - |’J Zdtz mjv; - i)_zi:mi‘/i'vi: > di2 -2 KE.

- 1d? /
Add, divide by 2: -2 ° — -
> a2 2 KE PE + E Fi-r

A 1 dl() di
verage: o lar\ T dt

— 00

(0)} —OKE+PE+ Y For 0

Compare to 2KE + PE —3P,V = 0.
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Virial Theorem

Validity:

Self-gravitating

» Steady state

» Time-averaged (or many objects)
>

Isolated (or slowly varying potential) Energy in a virialized system
PE and KE of Kepler Ellipse (e = 0.7) +ve

v

ﬁ' BE = E

MKE

KE

e PE

[
=
Ll
PE: Potential
KE: Kinetic
) BE: Binding E, = BE
& =PE+KE
PE ~ 143M/R2 = _KE
~ <ye>
KE ~ '/, M <v! = 1, PE

1 1 ! L
0 Rz 0.4 0.6 0.8 1

Time (fraction of period)

J.M. Lattimer AST 346, Galaxies, Part 4



Virial Theorem and Energy Changes

Negative Specific Heat

KE

Add energy: system

expands (PE more positive)
and cools (KE decreases)

KE

Energy release from collapsing system

Remove energy: system

contracts (PE more negative) Di system (e.g. stars; DM): energy released by ejection

e Energy released = BE
> / \
2, il
] T
§ =l

s BE=E,
-ve
Time PE KE

Dissipational system (e.g. gas): energy released via photons

and heats (KE inci

Lattimer

of a few particles
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Measuring Masses

Assume uniformity of the mass-to-light ratio M/L in the system. The
surface brightness /(x) = L/D? is the surface luminosity density.

The surface mass density is the projection of p along the line-of-sight

z =1+/r2 — R?, with R the impact parameter. Using the Plummer model,

o o 32’ Mdz Ma?
Y(R) = dz =2 _ ,
(R)= [ nlrehdz=2 [ e -
The parameter a can be inferred from /(x):
I(re) 1 X(re)

4,02, 2\2 re
_ _ . =<  ~155r.
0 "2 w0 2/E T am e et
2
Kinetic energy KE = } 2 M = _}PE = 3eM
27 M 2 64ma

for the Plummer model. One measures velocity dispersion o2 averaging
radial velocities v, relative to the system’s mean motion : 02 =< v? >.
Tangential motions are undetectable. Typically o, ~ 10 km s~ and v,
errors are about 0.5 km s~1. For isotropy, 02 = ;- 0 = 302. Thus

32a0?

G
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Measuring Masses

An alternate method makes use of a measurement of the total luminosity

Lot = 27 /Ox I(R)RdR = 2w£(((()))) /OOC Y(R)RdR

o RdR
4 2
= 277/(0)3 /(; m = 7TI(O)3 s

giving a = /Lot /(71(0)).
To find the average motion of one star within ®(x), the gravity of all
other stars gives a net external force. Then

<v2> = (VP(x) - x).

Assuming the Galaxy's mass is spherically symmetrically distributed
within the location of an object located far from the Galactic center and
the Sun, so r ~ d, one may compute Mg = v?r/G where

v = Vv, o + Vosinfcos b converts the radial velocity relative to the Sun to
the velocity relative to the Galactic center.
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Circular Motion — Reprise

Oort’s A (shear) and B (vorticity) constants are defined in terms of

circular rotation:
Al V. dV. B @
2 R dR 2 \ dR Ry

_1(V, dv\ _ R(d2 20
~ 2\R /R 2\dR R /)n
A~ 15 km s~ kpc™!, B~ —12 km s~ kpc~!. Note that
B dV, V. B
A+ B = <dR)RO, A B(dR> =Q

Rotation curve is fairly flat, the Sun's orbital period is Py = 27 /Qy = 230
Myr, and it's circular velocity is Vo = QgRy = 220 km s~1. These results
assume circular orbits, which is not actually the case in detail.

J.M. Lattimer AST 346, Galaxies, Part 4



Circular Motion — Reprise

Objects close to the Sun have radial a

v, = Arsin 2/,
Here are some examples of circular disk rotation, with full velocities
shown on the left (red vectors), and the differential velocity on the right
(blue vectors). Each pair is for a particular rotation curve gradient near
the sun (dV/dR). The galactic center is aty = -8.5 kpc, and Vy,, =220
km/s. The circle is 1 kpc in radius.

Flat Rotation Curve

Vi

True velocities Relative velocities (x10)

nd tangential velocities

= r(B + Acos2/).

Gently Rising Rotation Curve (+5 km/s/kpc)

Vo/Ry b 99/ = 25, 0 v

Corta K& 8z 129 123 m/a/ipe

True velocities Relotive velocites (x10)
VR, & /i = 25, 5 sn/uivoe Genty g Rotton Curve
oAk B: 104 -154 Imis/ioe

kpe & 300 km/s kpe & 30 kem/a

Solid Body Rotation Curve

True: velocities Relative velocities (x10)

VR, b /8 = 25,25 ko
e A& D: 04 25

kpe & 300 km/a kpe & 30 km/s

Gently Falling Rotation Curve (-5 km/s/kpc)

True: velocites Relotive velocities (x10)

o 4 /e

vn s e Genty Fting tation e

kpe & 300 km/s kpc & 30 km/s

Lattimer

kpe & 300 km /s ke & 30 km/z
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- = 1 sov, |
L . L,=rv, = const So lags behind
Stellar orbits in a rotating B owr?
. grav r
galaxy can be described by , , LN F>E,
s F.=v [rocr” So pulled inwards
of o
superposition of a background .
circular motion (guiding center . ! Retrograde Epicycle
N ray of —_ ;
at Rg W|th Qg) and an Somof/esoutv‘vards | frequency x
elliptical epicycle with angular e /l/ ST
Velocity Rg- So moves forward : :5&; :al:;c,.
i (in rotating frame)

Frame rotates with

Consider the motion in a

rotating frame. For a Guiding center

. . Frequency Q
Keplerian potential L« Centeroforbit
(Qg x Rg_?)/z)v the orbit and phases same phases advance with radius

epcicyclic frequencies are the
same, kg = {2,. The orbit is
closed, an off-centered ellipse.
In general k, # €z so orbits
don't close unless viewed from

(a) ©

a frame rotating at Qg — Fig/2- Figure 6-11. Arrangement of closed orbits in a galaxy with (2 — L« independent of
radius, to create bars and spiral patterns (after Kalnajs 1973).
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Axisymmetric Geometry

Radial (R) motions:

Equations of Motion:
. 2
i = —VO(R, z) (g‘;) _ % — Ry
. R, g
L, = R?¢ = constant 9 12 o
. . p_ Y9 z | 9P
R =Ry?—0¢/0r, z=-00/0z R=-3r [ + sz} ="
Vertical (z) motions: (0%ur /OR) 5 = (90/OR), — Li/RE
(09/02),0 =0 ’ 2 2
=RQ, — VZ/Rg =0
oP 9?®
S — (= . =" A a2
‘ <az>z—0 ‘ <az2 >Z_0 X - - (dq}eff) —Z (d q};ff) - _K/;Z
- <82<b) . OR R, OR R,
- 0z% ), - DD o 0’ 312
o =\ 5 + =7
€ OR? R, OR? R, Rg

z(t) = Z cos(vt + 1)
. . dQ? 2
From Poisson’s equation: = R—= +4Q
dR R

g

N 2 2,2
4rGp(R,0) ~ (dV:/dR)/R+v° ~v R=R,+x, x(t)=Xcos(kgt + do)
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Axisymmetric Geometry

Azimuthal motions: i
: - L, 0 } " R
@ — 75 — 75 . o 0.4 08 | 12 16
R?  (Rg +x)? ol 1
L, < 2X> < 2X> iﬂx
~ = (1-—)=9Q 1—— 04T |
R2 Ry € Ry |
2. X . 06T
o(t) = Qgt — £ sin(kgt + &)
5 gg P
y(t) = —H—gxsin(ngt+¢o) .2
g
x(t) = X cos(kgt)
2Q
y(t) = ——£ Xsin(kgzt) 2 &
Iig X 1

Motion is retrograde. For Keplerian
potential, kg = Qg. For flat rotation,
Qg x R;l, kg = \/§Qg. For solid QRg)
roFatlon, Q, constant, kg = 2Q,
(circular and closed).
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Values in the Solar Neighborhood

) Epicycle size X ~ 7 ~ .
In terms of Oort’s constants: picycle size oR/K, oz/V

ﬁg = —4B(A— B) = —4BQ, or ~ 30 km s~ ! implies X ~ 1 kpc.
1 1 , 0z~30km s~! and

ko ~ 37 km s~ kpce™ " = 0.037 Myr v = ErGpy ~ 0.1 Myr—! ~ 3Q

vo~ 96 km s~ ! kpe ™! = 0.096 Myr—* implies Z ~ 300 pc.

Q=A-B~27kms * kpc? The Sun is at zg = 40 pc with

V;o =7 km s7!, suggesting that

Since ko /o ~ 1.4, solar Zs ~ 80 pc.

neighborhood stars make 1.4

o . . T T
eplgycllc rotations per orbit; the " bolow2ayr ! PR
orbit appears to regress. 50

The azimuthal/radial extent of
epicycles is 2Qq/ko ~ 1.46.

vy (km s-1)
o

The mean-square azimuthal/radial * .
velocities at Ry: y2/x% = 4{2%/,@3 ! L A

v b b b B ndern g b b a4

But the azimuthal/radial velocity %0 = 0 o 50
dispersion near the Sun is actually v, (km s71) Vx

2 2 2 2 o Fig 3.11 'Galaxies in the Universe' Sparke/Gallagher CUP 2007
‘7<¢),0/‘7R,0 = kg /408 ~ 0.47

because this is measured at Rjy.
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Velocity Dispersion Near the Sun

Epicyclic trajectories in rest frame at R,:

x(t) = Xcos(kgt)  y(t)= —%?ggX sin(kgt)

At Ry, the azimuth obeys ¢ = Qg t + y(t)/R,. Relative to circular

motion at Ry:
y =V — Ve =Ro(¢p— Qo) =Ro | ¢ — Qg —x(t) | -5
dR )
2 dQ

~ —Rox(t) (R + dR)RO =2Bx(t) = —2—Qox(t)

We also have v, = vg = X(t). Then
2 2

W) _ 9y

(v2) 0% 405
We ignored that the density of stars decreases with R. There should be
more stars in the solar neighborhood on the outer parts of their epicycles,
with x > 0, than the inner, with x < 0. Therefore (v,) < 0, which is
called asymmetric drift. The effect is enhanced in older stars, those with

velocities further removed from circular motion.




Axisymmetric, Flattened Potentials

Kuzmin disk An infinitely thin sheet of mass M. Miyamoto-Nagai

b/a=10.2
O(R,2) = —— e BT

VRZ+ (a+|z])?
1 ob aM
2R =2r¢ (&)ZO = (R § 2)2

Miyamoto-Nagai disk b = 0 is a Kuzmin disk,
a =0 is a Plummer sphere.

O(R,z) =

2/a

2/a

VR + (a+ V2 B
(R.2) = b’M aR® + (a +3Vz22 + b?)(a+ V22 + b?) ¢
P = Tan (221 B2)32[RE 1 (a + V22 1 B2)2]5/2
Satoh disk -~ -~
®(R,z) = C;M = cM
\/R2+(a+,/22+b2)2_b2
B> M a R? + 22
R.z) = 3 '
HR= st |y O
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Stellar Encounters

Although the overall galactic potential ® is smooth, on small scales it has
deep potential wells around each star. Encounters aren’t as catastrophic
as collisions, and don't affect the overall motion of a star as much as the
overall smoot potential, but are extremely important in changing an
individual star’'s motion and randomizing the overall velocity distribution.
We distinguish between tidal capture (b < 3rga,), strong encounters

(b < rs, AV =~ V), in which the potential energy at closest approach is
larger than the initial kinetic energy, and weak encounters

(b>>rs, AV << V), when it is less. The strong encounter radius is

rs =2Gm/V? ~1 AU

where m ~ 0.5 M, is a stellar mass and V ~ 30 km s~ is the initial
relative velocity.

Had this happened to the Sun since its formation, the orbits of the
planets would have been disrupted. The time between close encounters is

te > (nr2Vn)~t = V3/(4nG?m?n)

=0 () (60) ()
B v 10 km st Mg pc—3 ’
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Encounter Geometry
(AV2) = V2 when t = trejax:

Distant weak encounters
Use the impulse approximation, ignoring
the deviation in the stellar paths. The
impact parameter is b. The perpindicular
pull of star m on star M is GmM /r?

times b/r, with r? = b? + V2t2:
dv,

GmMb
Fi(t)= =
+(1) (b2 + V2¢2)3/2 M dt
Deflection angle:
AV, 1 [t 2Gm
V== *Mv,/,mﬂdt’ bV?2

After many encounters

b, 2

max 2G F = GMm
@vi) = [ th('") 2bdb ke
b bV 0= AV, /v = 2GM/bv?

min

87 G2m?nt

i V3 ot
el T 8rnG2Zm2InA - 2In A

R 0.3-30 kpc

bmax
/\ = —~ — =
bm,',, rs 1 AU
In\ =18 — 22
Dynamical Friction Il
¥ 9 Original traj.
B
m : ”, \\%Zecﬁb,,a
i 812 %@;

/
Component paraliel to direction of motion

@“ =F sin 0/2 backwards

AF 4o = -MAV | = mAv, 6/2
Line of symmetry

= direction of mean pull

= 0/2 back from perp.

B 81 G2m?nt In bmax .
Vv Bmin %



Relaxation Applications

If integration is instead performed over a Maxwellian velocity distribution,
trelax iNCreases by a factor of 8 (replace 1/8w by 0.34).

L 2x100yr % Mo\ (103 pe3
refx InA 10 km st m n

» For the Sun, tyefax ~ 1012 yr.

» w Cen has N = 10, tyeiax ~ 0.5 Gyr and terpss ~ 0.5 Myr. On
crossing times, stars are little affected by encounters. But over its
lifetime, w Cen has been modified by relaxation.

» Open clusters, have lower densities and random velocities:

N = 100, tyeax ~ 10 Myr, teoss ~ 1 Myr. Have to include effects of
stellar evolution and mass loss to simulate evolution of open clusters.

» Elliptical Galaxy: N = 10, tyeax = 4 x 1010 yr, teoes = 102 yr.

For a virialized system of size R with N stars moving with an average V:

Nm\/?:G(Lm)z7 /\:E:GmN.i:N
2 2R . VZ 2Gm 2

With teess = R/V and 47n = 3N/F\’3
trelax o V3 4 V4R2 N

tooss  87nGZmZInA R 6NGZm2InA _ 6In(N/2)
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Without collisions, ®(x) does not change. But encounters alter the
energies of individual stars, preferentially removing energy from massive
stars. On average, encounters shuffle velocities toward a Maxwellian

distribution F(€) o exp (_ [mdD(X) N m2v2} /kT)
for equal mass stars. The effective temperature is
m(v3(x))/2 = 3kT /2.
More massive stars move less rapidly. At the upper end of the velocity
distribution, stars achieve escape velocity:
(%m\/ﬁ(x» = —% > mid(x) = —% PE = % KE.

i
This means escaping stars satisfy v2 > 12kT /m. Note that the fraction,
at any given time, of stars capable of escaping is

Ju, fE)2dv 0.0074 ~ —
S f(Ewvedv T 136

Thus teyap = 136 e/ax-



Mass Segregation

As massive stars (and binaries) lose
energy, they sink to the center; light
stars migrate outwards. In addition,
the stars near the center gain velocity,
so stars near the center tend to lose
energy even faster.

Mass segregation is a runaway process,
leading to core collapse after

12 — 20t,e/2x. Note the
too-small-to-see dense core in M15.

Encounters with binaries lead to
energy losses from binaries; they
become tighter. Release of energy
from binaries ( “binary burning”) can
halt or reverse core contraction.

stars per square degree

relative surface brightness

100

100

0.1

10 15

0 5
T T T T
E radius (parsecs) E
172 Pleiades
V7 %5
1
E M < Mg
L ) s
r %1W>M®
Tk S S
0 2 4 6

radius (degrees)
Fig 3.6 (J. Adams) Galaxies in the Universe' Sparke/Gallagher CUP 2007
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Fig 3.7 (Pasquali, Fahlman, Pryor) ‘Galaxies in the Universe' Sparke/Gallagher CUP 2007
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X-ray Sources

0.1

“" Gravothermal gscillations ]
200 400 600
t/t(0)

I

o T

Fregeau et al. 2003
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Collisionless Flows

Assume all stars have the same mass m and ignore encounters
(collisions). The distribution function f(x, v, t) is the probability density
in phase space, so that the number density at position x and time t is

n(x,t) = / / / f(x,v, t)dvedv,dv,.

Begin with 1-D, and the concepts that no stars are created or destroyed
in the flow and stars don't jump across phase space (no deflective
encounters). The net flow in x:

dx of
Edtdvx[f(x, Vi, t) — F(x + dx, vy, t)] = —dtdvxvxadx.
The net flow due to the velocity gradient:
st X[ (x, v £) — F(x, v+ dve, 1)] = —dltax 22 O g
X p X, Vx, X, Vx Vi, t)] = X Ty V. - o
P et — e [0, A e rar i
K gr T T Yo T d ov, | * iFowi K
| *x
oL O | OF v Of _OF | Of 09 Of vl
= s Vx 5= Y a . - a: - 1 1
at " "ox | dt dv, ot | Ox  Ox.0vs x*

'
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Collisionless Boltzmann Equation

Extending this to 3-D (other dimensions are independent) gives the CBE

g+v‘foV¢'g:

ot Ov 0-

This has followed from: 1. conservation of stars; 2. smooth orbits; 3.
flow through r implicitly defines v; 4. flow through v given by -V®.
It can also be written with a convective (or total or Lagrangian)
derivative instead of an Eulerian one:

df 0f Of dx Of dv

—=— 4t — — 4+ — . — =0.

dt 0t Ox dt Ov dt
This is incompressible flow. Think of a traffic jam: in a dense region, o
increases; in a rarefied region, o decreases. It also applies to all
sub-populations of stars (e.g., spectral classes) even though no one class
determines ®. A self-consistent field can be introduced which itself
generates O.
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Jeans Equations

The CBE is of limited use; what we observe are averages (e.g., (v2))

These can be extracted using moments. The number density is the
zeroth moment, the mean velocity is the first moment:

n(r, t) = /f(r,v, t)d3v,

0th moment CBE in 1-D:

(vi(r, t)) = %/v,—f(r,v7 t)d3v.

on  0(n(vy))
ot T ox O
1st moment CBE in 1-D:

O(vy) ny >8<VX> _ 09 1 d(no?)
C “ox T Tox o ox
where 02 = (v2

) — (vx)?. You can show in 3-D (o} is the stress tensor,
representing an anisotropic pressure):

{v;) Nv) 09

1 G(noﬁj)
o il g n

ox;  n Oxp

Compare to the Euler Equation for fluid flow, which has, however, p(p):
ov

1
V= -V — -
atJr(v v pr
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Applications of the Jeans Equations

Deriving M /L profiles in spherical galaxies

Determining of the surface and volume densities of the Galactic disc
Deriving the flattening of a rotating spheroid with isotropic velocity
dispersion

» Analysis of asymmetric drift

> Analysis of the local velocity ellipsoid in terms of Oort’s constants

In spherical symmetry, (v,) = (vy) =0, (v?) = 0?(i,j, k = r,0,9).

}d("ff%) + 1 {2 2 2 2] _ (vp)? _do

) R

vyYyy

n dr r
Define 3 =1— (07 4+ 03)/(202), Vior = (v),

o}

}d(naf) o2 V2, _do

26—+ — = ——

n dr T2 r r dr

d(no?) no? GM(r)n n_, n, 5
dr + b) r r2 + r rot I’( rot c)

02 looks like T, no? looks like p: equation of hydrostatic equilibrium.
Measuring /(x), o, Vior, and assuming (3, can find M(r) and M /L (r).
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Mass of the Galactic disc

Select a tracer population of stars (e.g., K dwarfs) and measure n(z) and
0,(z). Assuming @ is time-independent and stars are well-mixed, then f
and n are also time-independent. At large heights, (v,)n(z) — 0, so
(vz) = 0. The CBE for z is

1 d. o0

I’I(Z) E n(Z)Uz(Z)] - 75'
Take a derivative:
d 1 d 5 0o
pr (n(z)dz[n(Z)JZ(Z)]) T T o2
The Poisson equation in cylindrical coordinates with axisymmetry is

_Pe 19 (R8¢>82¢ 1 d

_ 72 Z -7 27 = Inlihall A V22
ArGp(R,z) = V (R, z) = 8Z2+R0R IR 022+RdR[V (R)].

For uniform rotation, the last term is small. Integrating along z:
“ 1 /7 1 d
/ 27Gp(R,z)dz =27 GX(< z) = —3 / d (n(z)dz[n(z)ag(z)o

h 7—Lin2022_2
R EPALCLAC)
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Integrals of Motion

Functions Z(x, v) that remain constant along an orbit are integrals of
motion.
» The energy per mass E(x, v) = v?/2 + ®(x) if ¢ is independent of
time.
» L, in an axisymmetric potential ®(R, z, t).
» L in a spherically symmetric potential ®(r, t).
An integral of motion satisfies

d dv 0T

7 =v.VI+ —.—==0.

p (x,v)=v-VZ+ at D 0
Any function f(x,v) which is a time-independent solution of the CBE is
an integral of motion. Conversely, the function f(Z1,Z,,...) is a

steady-state solution of the equations of motion: the Jeans Theorem.
The strong Jeans Theorem states that steady state distribution functions
are functions only of 3 (or less) independent integrals of motion.

» For spherical systems, f = f(E, |L|)

> If f = f(E), velocity dispersions are isotropic o, = 09 = 0.

» If f = f(E,|L]|), velocity dispersions are anisotropic o, # 0g = 0y
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Integrals of Motion

Motion of disk stars on circular orbits perpindicular to the plane is

independent of motion in the plane, so the energy of vertical motion E; is
an integral of motion. Select a tracer population of stars that are easy to
find and measure and which are well-mixed (f is time-independent). Then

f(z,v,) = f(E,) = f(®(Ro, 2) + v2/2).

> If we knew f(E,) and ®(Ry, z) we could integrate f(v;) to find n(z)
and o,.

» If we measured n(z) and guessed f(E,) we could determine
®(Ry, z). Suppose stars with E, > 0 escape:

f(E;) = no e*Ez/o—E’ E, <O0; f(E;) =0, E, > 0.

\/2mo?

n(z) = npe ®(Fo2)/* 5 — o if ve = —20(Rp,z) >> 0

However, note that v, ~ 20.
» If n(z) and 02 measured, ®(Ry, z) can be found from

d B 0P(Ro, 2)
e (n(z)o?] = fn(z)T.
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If the stars described by f provide all the gravitational force, then the
density n(x,v) found by integrating f(x, v, t) over v is equivalent to the
density p(x, t) in Poisson’s Equation. Many forms of f can give rise to
the same ®(x, t): all give the same n(x, t) but different v(x, t).

In a spherically symmetric potential, any function f(E,L) not including
unbound stars will be a solution. If f = f(E), velocity dispersions are
isotropic.

Example: f(E) = k(—E)N=3/2 for E<0, N >3/2.

Ve y21N-3/2
n(r) = 4x / k {d)(r) - 2} v3dv
Jo

/2
= 47k23/2(—d(r))V / sin?M =2 0 cos? 0df = key(—(r))",
0

after substituting cos(6) = v/\/—2d> Compare to Plummer sphere

(r) = 32 O5(r) = 3a° M
P = TG Me 41 (r2 + 22)5/2

suggesting N = 5 and f(E) = k(—E)"/2.
Total mass M oc k, a=[GM/®(0)]°.



Isothermal Models

Consider a Boltzmann-like distribution function:

_ Mo —E/o? _ No —(®+v?/2) /0
()= ey " = rorp®

ge.

n(r) =4r /0 fF(E(v))v2dv = nee ¢/’

Poisson’s equation

d [ ,dInn 47rGr2n
“r -
dr dr o2

which is the isothermal spherical solution.

(i) Singular isothermal sphere

2
o
n(r) = G2 Ve =V20, (v?) =302

But has infinite central density and M — oo as r — oo.
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Isothermal Models

General isothermal sphere
n(0) = ng, (dn/dr),—o =0.

The density varies slowly near the

center, out to r, = 30/v/47Gpo.

ro is the core (King) radius, and is also
the scale length of the envelope.

I(r,) = 0.5013/(0).

V2 =0o2dInn/dInr.

At small radii,

n(r) = no(1 + (r/ro)?) /2.
At large radii, n(r) o< (r/r,) 2
02 = 41 Gn,r,/9 y
A good fit to the centers of elliptical ,}f

galaxies can be used to estimate >
central M/L.

» Measure /(R) and determine r,
and /(0)

» Also measure o2.

» Then M/L =902/(2rGI(0)r,).

But this still has an infinite total mass.
The problem is f(—E) > 0 even when
E is positive, i.e., the model includes
unbound stars.

1072 ¢ ]
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Isothermal Models

Lowered isothermal sphere

Suppress stars at large radii; f(—E) — 0

when E — 0,v — ve.

It is convenient to define ¥ = —® and
E,=—-E=V-— v2/2.
n 2
FE) = o [e/70 1]
( ) (271_0.0)3/2 €
d dv
E <r2dr> = —47anor2><
e‘“/"i erf ﬂ _ ﬂ 1 + &
Oo To2 302
Inner regions: core radius ~ r,, o2 ~ Jg

Outer regions: truncated at ry, 02 << Ug

If W(0) = qo2, ry =~ r,109/%,

T T T YTy T T T T T
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Figure 4-9. (a) Density profiles of four King models: fmm top to bottom

the central potentials of these models satisfy ©(0)/o? =

=12,9,6,3. (b)

The projected mass densities of these models (fu]l curvaa) and the
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In general, we find a single equation to be satisfied for consistency with
the steady state CBE and Poisson’s equation:

2\u
li (r (Z;U> = —167 2G/ — v2/2)v dv
r

r2 dr

—4nGp(V) = —167r2G/ E)V2(V — E,)dE,

p(V) /‘“ 1 dp _ [V f(E)dE
=2 [ f(E)\V — E,dE,, - I\E)9Er
V8r 0 (E:) T VerdV o )y VUV —E

This is an Abel integral equation with solution

HE) = 1 d/E’dp dw
Y BrdE Jo dVE —V

“aall A (R

This is an alternate method, begininning with measuring p(r) from
surface photometry. Find W(r) = —®(r) = GM(< r)/r from p(r), then
eliminate r to find p(WV).
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