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Stellar Systems vs. Gases

Similarities

I Comprise many
interacting point-like
objects

I Can be described by
distribution functions of
position and velocity

I Obey continuity
equations (are not
created or destroyed)

I Interactions and the
systems as a whole obey
conservation laws of
energy and momentum

I Concepts like pressure
and temperature apply

Differences

I Relative importance of short (gas) and
long-range (stellar systems) forces

I Stars interact continuously with entire
ensemble via long-range force of gravity

I Gases interct continuously via frequent,
short-range, strong, elastic, repulsive
collisions

I Stellar pairwise encounters are very rare

I Pressures in stellar systems can be
anisotropic

I Stellar systems have negative specific heat
and evolve away from uniform temperature

I Gases evolve toward uniform temperature
and have positive specific heats
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Potential Theory

Gravitational potential is a scalar field whose gradient gives the net
gravitational force (per unit mass), a vector field.

−Φ(r) =G

∫
V

ρ(r′)

|r′ − r|
d3r′ =

GM(r)

r
+ 4πG

∫ ∞
r

ρ(r ′)r ′dr ′ =

∫ ∞
r

GM(r ′)

r ′2
dr ′

F(r)

m
=

dv

dt
= −∇Φ(r) = G

∫
V

ρ(r′)
r′ − r

|r′ − r|3
d3r′ = −GM(r)

r2
= −Vc (r)2

r

By convention, Φ(r)→ 0 as r→∞. Outside a spherically symmetric
object, Φ(r) = −GM/r . Inside a spherically symmetric uniform density
shell, Φ(r) = 0. The divergence of F gives Poisson’s equation:

− 1

m
∇ · F(r) = ∇2Φ(r) = 4πGρ(r).

Using Gauss’ Theorem,

4πGM = 4πG

∫
V

ρ(r)d3r = − 1

m

∫
V

∇ · F(r)d3r = − 1

m

∫
A

F(r) · d2S

Gravitational potential energy (last equality for spherical symmetry)

W =
1

2

∫
V

ρ(r)Φ(r)d3r = − 1

8πG

∫
V

|∇Φ|2d3r = −G

∫
M

M(r)

r
dM.
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Analytic Density-Potential Pairs in Spherical Symmetry

I Homogenous sphere (radius R, ρ(r < R) = C )
Inside: Φ(r) = −2πG (R2 − r2/3), F (r) = −GM(r)/r2

V 2
c = GM(r)/r = 4πGρr2/3 (ω(r) = constant).

I Singular isothermal sphere (ρ(r) = ρor2
o /r

2)
Φ(r) = 4πGρor2

o ln r + C , M(r) = 4πρor2
o r , V 2

c = 4πGρ0r
2
o .

I Power law (ρ(r) = ρo(r/ro)−α, 2 < α < 3)
Φ(r) = −4πGρor2

o (r/ro)2−α/[(3− α)(α− 2)],
M(r) = 4πGρor3

o (r/ro)3−α/(3− α).

I Hernquist (ρ(r) =Ma/[2πr(r + a)3])
Φ(r) = −GM/(r + a), M(r) =Mr2/(r + a)2.

I Jaffe (ρ(r) =Ma/[4πr2(r + a)2])
Φ(r) = −(GM/a) ln(1 + a/r), M(r) =Mr/(r + a).

I Plummer (ρ(r) = 3a2M/[4π(r2 + a2)5/2])
Φ(r) = −GM/

√
r2 + a2, M(r) =Mr3/(r2 + a2)3/2.

I Navarro-Frenk-White (ρ(r) = ρNa3/[r(r + a)2])
Φ(r) = −4πGρNa3r−1 ln(1 + r/a),
M(r) = 4πρNa3[ln(1 + r/a)− r/(r + a)].
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Density Laws
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Orbits of Single Stars

v·
[
dv

dt
+∇Φ(r)

]
= 0 =

d

dt

[
1

2
v2 + Φ(r)

]
.

Star’s energy E is therefore constant, where

E =
m

2
v2 + mΦ(r) = KE + PE .

A star can escape only with E > 0 since KE> 0, thus

V 2
esc (r) = −2Φ(r).

Changes to the star’s angular momentum L = mr × v:

dL
dt

=
d

dt
mr × v = mr × dv

dt
= −mr ×∇Φ(r).

For spherical symmetry, L is therefore conserved.
In a stellar system, individual stellar energies or angular momenta are not
conserved, but their sums are.
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The Virial Theorem

Newton’s Law of Gravity d(mv)/dt = −GmMr/r3.

d

dt
(mi vi ) = −

∑
j 6=i

Gmimj

|ri − rj |3
(ri − rj ).

∑
i

d

dt
(mi vi · rj ) = −

∑
i

∑
j 6=i

Gmimj

|ri − rj |3
(ri − rj ) · ri +

∑
i

Fi · ri .

∑
j

d

dt
(mj vj · rj ) = −

∑
i

∑
j 6=i

Gmimj

|ri − rj |3
(rj − ri ) · ri +

∑
j

Fj · rj .

∑
i

d

dt
(mi vi · rj ) =

1

2

∑
i

d2

dt2
(mi ri · ri )−

∑
i

mi vi · vi =
1

2

d2I

dt2
− 2 KE.

Add, divide by 2: 1

2

d2I

dt2
− 2 KE = PE +

∑
Fi · ri

Average:
1

2τ

[
dI

dt
(τ)− dI

dt
(0)

]
= 2KE + PE +

∑
i

Fi · ri −→
τ→∞

0

Compare to 2KE + PE −3PoV = 0.
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Virial Theorem

Validity:

I Self-gravitating
I Steady state
I Time-averaged (or many objects)
I Isolated (or slowly varying potential)
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Virial Theorem and Energy Changes
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Measuring Masses

Assume uniformity of the mass-to-light ratio M/L in the system. The
surface brightness I (x) = L/D2 is the surface luminosity density.
The surface mass density is the projection of ρ along the line-of-sight
z =
√

r2 − R2, with R the impact parameter. Using the Plummer model,

Σ(R) =

∫ ∞
−∞

ρ(r(z))dz = 2

∫ ∞
0

3a2Mdz

4π(a2 + z2 + R2)5/2
=

Ma2

π(a2 + R2)2
.

The parameter a can be inferred from I (x):

I (rc )

I (0)
=

1

2
=

Σ(rc )

Σ(0)
= a4/(a2 + r2

c )2, a =
rc√√
2− 1

' 1.55rc .

Kinetic energy KE =
1

2
σ2M = −1

2
PE =

3GM2

64πa
for the Plummer model. One measures velocity dispersion σ2 averaging
radial velocities vr relative to the system’s mean motion : σ2

r =< v2
r >.

Tangential motions are undetectable. Typically σr ∼ 10 km s−1 and vr

errors are about 0.5 km s−1. For isotropy, σ2 = σi · σi = 3σ2
r . Thus

M =
32aσ2

r

πG
.

J.M. Lattimer AST 346, Galaxies, Part 4



Measuring Masses

An alternate method makes use of a measurement of the total luminosity

Ltot = 2π

∫ ∞
0

I (R)RdR = 2π
I (0)

Σ(0)

∫ ∞
0

Σ(R)RdR

= 2πI (0)a4

∫ ∞
0

RdR

(a2 + R2)2
= πI (0)a2,

giving a =
√

Ltot/(πI (0)).
To find the average motion of one star within Φ(x), the gravity of all
other stars gives a net external force. Then

〈v2〉 = 〈∇Φ(x) · x〉.

Assuming the Galaxy’s mass is spherically symmetrically distributed
within the location of an object located far from the Galactic center and
the Sun, so r ' d , one may compute MG = v2r/G where
v = vr ,� + V0 sin ` cos b converts the radial velocity relative to the Sun to
the velocity relative to the Galactic center.

J.M. Lattimer AST 346, Galaxies, Part 4



Circular Motion – Reprise

Oort’s A (shear) and B (vorticity) constants are defined in terms of
circular rotation:

A =
1

2

(
Vc

R
− dVc

dR

)
R0

= −R

2

(
dΩ

dR

)
R0

B =− 1

2

(
Vc

R
+

dVc

dR

)
R0

= −R

2

(
dΩ

dR
+

2Ω

R

)
R0

A ' 15 km s−1 kpc−1,B ' −12 km s−1 kpc−1. Note that

A + B = −
(

dVc

dR

)
R0

, A− B =

(
Vc

dR

)
R0

= Ω0

Rotation curve is fairly flat, the Sun’s orbital period is P0 = 2π/Ω0 = 230
Myr, and it’s circular velocity is V0 = Ω0R0 = 220 km s−1. These results
assume circular orbits, which is not actually the case in detail.
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Circular Motion – Reprise

Objects close to the Sun have radial and tangential velocities

vr = Ar sin 2`, vt = r(B + A cos 2`).
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Epicycles

Stellar orbits in a rotating
galaxy can be described by
superposition of a background
circular motion (guiding center
at Rg with Ωg ) and an
elliptical epicycle with angular
velocity κg .

Consider the motion in a
rotating frame. For a
Keplerian potential

(Ωg ∝ R
−3/2
g ), the orbit and

epcicyclic frequencies are the
same, κg = Ωg . The orbit is
closed, an off-centered ellipse.
In general κg 6= Ωg so orbits
don’t close unless viewed from
a frame rotating at Ωg − κg/2.

phases same phases advance with radius
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Axisymmetric Geometry

Equations of Motion:

r̈ = −∇Φ(R, z)

Lz = R2φ̇ = constant

R̈ = Rφ̇2−∂Φ/∂r , z̈ = −∂Φ/∂z

Vertical (z) motions:

(∂Φ/∂z)z=0 = 0

z̈ = −
(
∂Φ

∂z

)
z=0

− z

(
∂2Φ

∂z2

)
z=0

= −z

(
∂2Φ

∂z2

)
z=0

= −ν2z

z(t) = Z cos(νt + ψ0)

From Poisson’s equation:

4πGρ(R, 0) ' (dV 2
c /dR)/R+ν2 ' ν2

Radial (R) motions:(
∂Φ

∂R

)
Rg

=
V 2

c

Rg
= Rg Ω2

g

R̈ = − ∂

∂R

[
Φ +

L2
z

2R2

]
≡ −∂Φeff

∂r

(∂Φeff /∂R)Rg
= (∂Φ/∂R)Rg

− L2
z/R

3
g

= Rg Ω2
g − V 2

c /Rg = 0

ẍ = −
(
∂Φeff

∂R

)
Rg

−z

(
∂2Φeff

∂R2

)
Rg

= −κ2
gz

κ2
g =

(
∂2Φeff

∂R2

)
Rg

=

(
∂2Φ

∂R2

)
Rg

+
3L2

z

R4
g

=

(
R

dΩ2

dR
+ 4Ω2

)
Rg

R = Rg + x , x(t) = X cos(κg t + φ0)
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Axisymmetric Geometry

Azimuthal motions:

φ̇ =
Lz

R2
=

Lz

(Rg + x)2

' Lz

R2
g

(
1− 2x

Rg

)
= Ωg

(
1− 2x

Rg

)
φ(t) = Ωg t − 2ΩgX

κgRg
sin(κg t + φ0)

y(t) = −2Ωg

κg
X sin(κg t + φ0)

x(t) = X cos(κg t)

y(t) = −2Ωg

κg
X sin(κg t)

Motion is retrograde. For Keplerian
potential, κg = Ωg . For flat rotation,
Ωg ∝ R−1

g , κg =
√

2Ωg . For solid
rotation, Ωg constant, κg = 2Ωg

(circular and closed).
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Values in the Solar Neighborhood

In terms of Oort’s constants:

κ2
0 = −4B(A− B) = −4BΩ0

κ0 ' 37 km s−1 kpc−1 = 0.037 Myr−1

ν0 ' 96 km s−1 kpc−1 = 0.096 Myr−1

Ω0 = A− B ' 27 km s−1 kpc−1

Since κ0/Ω0 ≈ 1.4, solar
neighborhood stars make 1.4
epicyclic rotations per orbit; the
orbit appears to regress.

The azimuthal/radial extent of
epicycles is 2Ω0/κ0 ≈ 1.46.

The mean-square azimuthal/radial
velocities at Rg : ẏ2/ẋ2 = 4Ω2

0/κ
2
0.

But the azimuthal/radial velocity
dispersion near the Sun is actually
σ2
φ,0/σ

2
R,0 = κ2

0/4Ω2
0 ≈ 0.47

because this is measured at R0.

Epicycle size X ≈ σR/κ,Z ≈ σz/ν.

σR ∼ 30 km s−1 implies X ∼ 1 kpc.
σz ∼ 30 km s−1 and
ν =
√

4πGρ0 ∼ 0.1 Myr−1 ∼ 3Ω0

implies Z ∼ 300 pc.

The Sun is at z� = 40 pc with
vz,� = 7 km s−1, suggesting that
Z� ' 80 pc.
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Velocity Dispersion Near the Sun

Epicyclic trajectories in rest frame at Rg :

x(t) = X cos(κg t) y(t) = −2Ωg

κg
X sin(κg t)

At R0, the azimuth obeys φ = Ωg t + y(t)/Rg . Relative to circular
motion at R0:

vy = vφ − vc = R0(φ̇− Ω0) = R0

[
φ̇− Ωg − x(t)

(
dΩ

dR

)
Rg

]

' −R0x(t)

(
2Ω

R
+

dΩ

dR

)
R0

= 2Bx(t) = − κ2
0

2Ω0
x(t)

We also have vx = vR = ẋ(t). Then
〈v2

y 〉
〈v2

x 〉
=
σ2

y

σ2
x

' κ2
0

4Ω2
0

We ignored that the density of stars decreases with R. There should be
more stars in the solar neighborhood on the outer parts of their epicycles,
with x > 0, than the inner, with x < 0. Therefore 〈vy 〉 < 0, which is
called asymmetric drift. The effect is enhanced in older stars, those with
velocities further removed from circular motion.
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Axisymmetric, Flattened Potentials

Kuzmin disk An infinitely thin sheet of mass M.

Φ(R, z) = − GM√
R2 + (a + |z |)2

,

Σ(R) =
1

2πG

(
∂Φ

∂z

)
z=0

=
aM

2π(R2 + a2)3/2

Miyamoto-Nagai disk b = 0 is a Kuzmin disk,
a = 0 is a Plummer sphere.

Φ(R, z) = − GM√
R2 + (a +

√
z2 + b2)2

ρ(R, z) =
b2M

4π

aR2 + (a + 3
√

z2 + b2)(a +
√

z2 + b2)

(z2 + b2)3/2[R2 + (a +
√

z2 + b2)2]5/2

Satoh disk
Φ(R, z) =

−GM
S

≡ −GM√
R2 + (a +

√
z2 + b2)2 − b2

ρ(R, z) =
b2M

4πS3(z2 + b2)

[
a√

z2 + b2
+ 3− 3

R2 + z2

S2

]
.

Miyamoto-Nagai

b/a = 0.2

b/a = 1.0

b/a = 5.0
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Stellar Encounters

Although the overall galactic potential Φ is smooth, on small scales it has
deep potential wells around each star. Encounters aren’t as catastrophic
as collisions, and don’t affect the overall motion of a star as much as the
overall smoot potential, but are extremely important in changing an
individual star’s motion and randomizing the overall velocity distribution.
We distinguish between tidal capture (b < 3rstar ), strong encounters
(b < rs ,∆V ' V ), in which the potential energy at closest approach is
larger than the initial kinetic energy, and weak encounters
(b >> rs ,∆V << V ), when it is less. The strong encounter radius is

rs = 2Gm/V 2 ' 1 AU

where m ∼ 0.5 M� is a stellar mass and V ∼ 30 km s−1 is the initial
relative velocity.
Had this happened to the Sun since its formation, the orbits of the
planets would have been disrupted. The time between close encounters is

ts ' (πr2
s Vn)−1 = V 3/(4πG 2m2n)

' 4× 1012 yr
(

V

10 km s−1

)3(
m

M�

)−2(
n

pc−3

)−1

.
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Encounter Geometry

Distant weak encounters
Use the impulse approximation, ignoring
the deviation in the stellar paths. The
impact parameter is b. The perpindicular
pull of star m on star M is GmM/r2

times b/r , with r2 = b2 + V 2t2:

F⊥(t) =
GmMb

(b2 + V 2t2)3/2
=MdV⊥

dt

Deflection angle:

θ =
∆V⊥

V
=

1

MV

∫ +∞

−∞
F⊥dt =

2Gm

bV 2

After many encounters

〈∆V 2
⊥〉 =

∫ bmax

bmin

nVt

(
2Gm

bV

)2

2πbdb

=
8πG 2m2nt

V
ln

bmax

bmin
=

8πG 2m2nt

V
ln Λ

〈∆V 2
⊥〉 = V 2 when t = trelax :

trelax =
V 3

8πnG 2m2 ln Λ
=

ts

2 ln Λ

Λ =
bmax

bmin
∼ R

rs
=

0.3− 30 kpc
1 AU

ln Λ = 18− 22
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Relaxation Applications
If integration is instead performed over a Maxwellian velocity distribution,
trelax increases by a factor of 8 (replace 1/8π by 0.34).

trelax '
2× 1010 yr

ln Λ

(
V

10 km s−1

)3(M�
m

)2(
103 pc−3

n

)
I For the Sun, trelax ∼ 1012 yr.
I ω Cen has N = 105, trelax ∼ 0.5 Gyr and tcross ∼ 0.5 Myr. On

crossing times, stars are little affected by encounters. But over its
lifetime, ω Cen has been modified by relaxation.

I Open clusters, have lower densities and random velocities:
N = 100, trelax ∼ 10 Myr, tcross ∼ 1 Myr. Have to include effects of
stellar evolution and mass loss to simulate evolution of open clusters.

I Elliptical Galaxy: N = 1011, trelax = 4× 1016 yr, tcross = 108 yr.
For a virialized system of size R with N stars moving with an average V :

N

2
mV 2 =

G (Nm)2

2R
, Λ =

R

rs
=

GmN

V 2
· V 2

2Gm
=

N

2

With tcross = R/V and 4πn = 3N/R3

trelax

tcross
=

V 3

8πnG 2m2 ln Λ
· V

R
=

V 4R2

6NG 2m2 ln Λ
=

N

6 ln(N/2)
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Evaporation

Without collisions, Φ(x) does not change. But encounters alter the
energies of individual stars, preferentially removing energy from massive
stars. On average, encounters shuffle velocities toward a Maxwellian
distribution

f (E) ∝ exp

(
−
[
mΦ(X) +

mv2

2

]
/kT

)
for equal mass stars. The effective temperature is

m〈v2(x)〉/2 = 3kT/2.

More massive stars move less rapidly. At the upper end of the velocity
distribution, stars achieve escape velocity:

〈1
2
mv2

e (x)〉 = − 1

N

∑
i

mi Φ(xi ) = − 2

N
PE =

4

N
KE.

This means escaping stars satisfy v2
e ≥ 12kT/m. Note that the fraction,

at any given time, of stars capable of escaping is∫∞
ve

f (E)v2dv∫∞
0

f (E)v2dv
= 0.0074 ≈ 1

136
.

Thus tevap = 136trelax .
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Mass Segregation

As massive stars (and binaries) lose
energy, they sink to the center; light
stars migrate outwards. In addition,
the stars near the center gain velocity,
so stars near the center tend to lose
energy even faster.

Mass segregation is a runaway process,
leading to core collapse after
12− 20trelax . Note the
too-small-to-see dense core in M15.

Encounters with binaries lead to
energy losses from binaries; they
become tighter. Release of energy
from binaries (“binary burning”) can
halt or reverse core contraction.

Pleiades

M <M�

M >M�
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X-ray Sources
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Collisionless Flows

Assume all stars have the same mass m and ignore encounters
(collisions). The distribution function f (x, v, t) is the probability density
in phase space, so that the number density at position x and time t is

n(x, t) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f (x, v, t)dvxdvydvz .

Begin with 1-D, and the concepts that no stars are created or destroyed
in the flow and stars don’t jump across phase space (no deflective
encounters). The net flow in x:

dx

dt
dtdvx [f (x , vx , t)− f (x + dx , vx , t)] = −dtdvxvx

∂f

∂x
dx .

The net flow due to the velocity gradient:

dxdt
dvx

dt
[f (x , vx , t)− f (x , vx + dvx , t)] = −dtdx

dvx

dt

∂f

∂vx
dvx .

Adding:

dxdvxdt
∂f

∂t
= −dtdxdvx

[
vx
∂f

∂x
+

dvx

dt

∂f

∂vx

]
.

0 =
∂f

∂t
+ vx

∂f

∂x
+

dvx

dt

∂f

∂vx
=
∂f

∂t
+ vx

∂f

∂x
− ∂Φ

∂x

∂f

∂vx
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Collisionless Boltzmann Equation

Extending this to 3-D (other dimensions are independent) gives the CBE

∂f

∂t
+ v · ∇f −∇Φ · ∂f

∂v
= 0.

This has followed from: 1. conservation of stars; 2. smooth orbits; 3.
flow through r implicitly defines v; 4. flow through v given by -∇Φ.
It can also be written with a convective (or total or Lagrangian)
derivative instead of an Eulerian one:

df

dt
=
∂f

∂t
+
∂f

∂x
· dx

dt
+
∂f

∂v
· dv

dt
= 0.

This is incompressible flow. Think of a traffic jam: in a dense region, σ
increases; in a rarefied region, σ decreases. It also applies to all
sub-populations of stars (e.g., spectral classes) even though no one class
determines Φ. A self-consistent field can be introduced which itself
generates Φ.
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Jeans Equations

The CBE is of limited use; what we observe are averages (e.g., 〈v2〉).
These can be extracted using moments. The number density is the
zeroth moment, the mean velocity is the first moment:

n(r, t) =

∫
f (r, v, t)d3v , 〈vi (r, t)〉 =

1

n

∫
vi f (r, v, t)d3v .

0th moment CBE in 1-D:
∂n

∂t
+
∂(n〈vx〉)
∂x

= 0.

1st moment CBE in 1-D:
∂〈vx〉
∂t

+ 〈vx〉
∂〈vx〉
∂x

= −∂Φ

∂x
− 1

n

∂(nσ2
x )

∂x
where σ2

x = 〈v2
x 〉 − 〈vx〉2. You can show in 3-D (σi,j is the stress tensor,

representing an anisotropic pressure):

∂〈vj〉
∂t

+ 〈vi 〉
∂〈vj〉
∂i

= −∂Φ

∂xj
− 1

n

∂(nσ2
i,j )

∂xi
.

Compare to the Euler Equation for fluid flow, which has, however, p(ρ):
∂v

∂t
+ (v · ∇)v = −∇Φ− 1

ρ
∇p
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Applications of the Jeans Equations

I Deriving M/L profiles in spherical galaxies
I Determining of the surface and volume densities of the Galactic disc
I Deriving the flattening of a rotating spheroid with isotropic velocity

dispersion
I Analysis of asymmetric drift
I Analysis of the local velocity ellipsoid in terms of Oort’s constants

In spherical symmetry, 〈vr 〉 = 〈vθ〉 = 0, 〈v2
i 〉 = σ2

i (i , j , k = r , θ, φ).

1

n

d(nσ2
r )

dr
+

1

r

[
2σ2

r − σ2
θ − σ2

φ

]
− 〈vφ〉

2

r
= −dΦ

dt

Define β = 1− (σ2
θ + σ2

φ)/(2σ2
r ), Vrot = 〈vφ〉,

1

n

d(nσ2
r )

dr
+ 2β

σ2
r

r
− V 2

rot

r
= −dΦ

dr

d(nσ2
r )

dr
+ 2β

nσ2
r

r
= −GM(r)n

r2
+

n

r
V 2

rot =
n

r
(V 2

rot − V 2
c )

σ2
r looks like T , nσ2

r looks like p: equation of hydrostatic equilibrium.
Measuring I (x), σr ,Vrot , and assuming β, can find M(r) and M/L (r).
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Mass of the Galactic disc

Select a tracer population of stars (e.g., K dwarfs) and measure n(z) and
σz (z). Assuming Φ is time-independent and stars are well-mixed, then f
and n are also time-independent. At large heights, 〈vz〉n(z)→ 0, so
〈vz〉 = 0. The CBE for z is

1

n(z)

d

dz
[n(z)σ2

z (z)] = −∂Φ

∂z
.

Take a derivative:
d

dz

(
1

n(z)

d

dz
[n(z)σ2

z (z)]

)
= −∂

2Φ

∂z2
.

The Poisson equation in cylindrical coordinates with axisymmetry is

4πGρ(R, z) = ∇2Φ(R, z) =
∂2Φ

∂z2
+

1

R

∂

∂R

(
R
∂Φ

∂R

)
=
∂2Φ

∂z2
+

1

R

d

dR
[V 2(R)].

For uniform rotation, the last term is small. Integrating along z :∫ z

−z

2πGρ(R, z)dz ≡ 2πGΣ(< z) = −1

2

∫ z

−z

d

(
1

n(z)

d

dz
[n(z)σ2

z (z)]

)
= − 1

n(z)

d

dz
[n(z)σ2

z (z)]
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Integrals of Motion

Functions I(x, v) that remain constant along an orbit are integrals of
motion.

I The energy per mass E (x, v) = v2/2 + Φ(x) if Φ is independent of
time.

I Lz in an axisymmetric potential Φ(R, z , t).
I L in a spherically symmetric potential Φ(r , t).

An integral of motion satisfies

d

dt
I(x, v) = v · ∇I +

dv

dt
· ∂I
∂v

= 0.

Any function f (x, v) which is a time-independent solution of the CBE is
an integral of motion. Conversely, the function f (I1, I2, . . . ) is a
steady-state solution of the equations of motion: the Jeans Theorem.

The strong Jeans Theorem states that steady state distribution functions
are functions only of 3 (or less) independent integrals of motion.

I For spherical systems, f = f (E , |L|)
I If f = f (E ), velocity dispersions are isotropic σr = σθ = σφ.
I If f = f (E , |L|), velocity dispersions are anisotropic σr 6= σθ = σφ
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Integrals of Motion

Motion of disk stars on circular orbits perpindicular to the plane is
independent of motion in the plane, so the energy of vertical motion Ez is
an integral of motion. Select a tracer population of stars that are easy to
find and measure and which are well-mixed (f is time-independent). Then

f (z , vz ) = f (Ez ) = f (Φ(R0, z) + v2
z /2).

I If we knew f (Ez ) and Φ(R0, z) we could integrate f (vz ) to find n(z)
and σz .

I If we measured n(z) and guessed f (Ez ) we could determine
Φ(R0, z). Suppose stars with Ez > 0 escape:

f (Ez ) =
n0√
2πσ2

z

e−Ez/σ
2
z , Ez < 0; f (Ez ) = 0, Ez > 0.

n(z) = n0e
−Φ(R0,z)/σ2

, σz = σ if ve = −2Φ(R0, z) >> σ

However, note that ve ∼ 2σ.
I If n(z) and σ2

z measured, Φ(R0, z) can be found from

d

dz

[
n(z)σ2

z

]
= −n(z)

∂Φ(R0, z)

∂z
.
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Consistency

If the stars described by f provide all the gravitational force, then the
density n(x, v) found by integrating f (x, v, t) over v is equivalent to the
density ρ(x, t) in Poisson’s Equation. Many forms of f can give rise to
the same Φ(x, t): all give the same n(x, t) but different v(x, t).
In a spherically symmetric potential, any function f (E ,L) not including
unbound stars will be a solution. If f = f (E ), velocity dispersions are
isotropic.
Example: f (E ) = k(−E )N−3/2 for E < 0, N > 3/2.

n(r) = 4π

∫ ve

0

k

[
−Φ(r)− v2

2

]N−3/2

v2dv

= 4πk23/2(−Φ(r))N

∫ π/2

0

sin2N−2 θ cos2 θdθ = kcN (−Φ(r))N ,

after substituting cos(θ) = v/
√
−2Φ(r). Compare to Plummer sphere

ρ(r) = − 3a2

4πG 5M4
Φ5(r) =

3a2

4π

M
(r2 + a2)5/2

suggesting N = 5 and f (E ) = k(−E )7/2.
Total mass M∝ k , a = [GM/Φ(0)]2.
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Isothermal Models

Consider a Boltzmann-like distribution function:

f (E ) =
no

(2πσ2)3/2
e−E/σ2

=
no

(2πσ2)3/2
e−(Φ+v 2/2)/σ2

n(r) = 4π

∫ ∞
0

f (E (v))v2dv = noe−Φ/σ2

Poisson’s equation

d

dr

(
r2 d ln n

dr

)
= −4πG

σ2
r2n

which is the isothermal spherical solution.

(i) Singular isothermal sphere

n(r) =
σ2

2πGr2
, Vc =

√
2σ, 〈v2〉 = 3σ2

But has infinite central density and M→∞ as r →∞.
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Isothermal Models

General isothermal sphere
n(0) = n0, (dn/dr)r=0 = 0.

The density varies slowly near the
center, out to ro = 3σ/

√
4πGρ0.

ro is the core (King) radius, and is also
the scale length of the envelope.

I (ro) = 0.5013I (0).

V 2
c = σ2d ln n/d ln r .

At small radii,
n(r) = n0(1 + (r/ro)2)−3/2.

At large radii, n(r) ∝ (r/ro)−2

σ2 = 4πGnoro/9

A good fit to the centers of elliptical
galaxies can be used to estimate
central M/L.

I Measure I (R) and determine ro

and I (0)

I Also measure σ2.

I Then M/L = 9σ2/(2πGI (0)ro).

But this still has an infinite total mass.
The problem is f (−E ) > 0 even when
E is positive, i.e., the model includes
unbound stars.
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Isothermal Models

Lowered isothermal sphere
Suppress stars at large radii; f (−E )→ 0
when E → 0, v → ve .

It is convenient to define Ψ = −Φ and
Er = −E = Ψ− v2/2.

f (Er ) =
no

(2πσo)3/2

[
eEr/σ

2
o − 1

]

d

dr

(
r2 dΨ

dr

)
= −4πGnor2×[

eΨ/σ2
o erf

(√
Ψ

σo

)
−

√
4Ψ

πσ2
o

(
1 +

2Ψ

3σ2
o

)]

Inner regions: core radius ∼ ro , σ2 ' σ2
o

Outer regions: truncated at rt , σ2 << σ2
o

If Ψ(0) = qσ2
o , rt ' ro10q/4.
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Consistency

In general, we find a single equation to be satisfied for consistency with
the steady state CBE and Poisson’s equation:

1

r2

d

dr

(
r2 dΨ

dr

)
= −16π2G

∫ √2Ψ

0

f (Ψ− v2/2)v2dv

−4πGρ(Ψ) = −16π2G

∫ Ψ

0

f (Er )
√

2(Ψ− Er )dEr

ρ(Ψ)√
8π

= 2

∫ Ψ

0

f (Er )
√

Ψ− ErdEr ,
1√
8π

dρ

dΨ
=

∫ Ψ

0

f (Er )dEr√
Ψ− Er

.

This is an Abel integral equation with solution

f (Er ) =
1√
8π

d

dEr

∫ Er

0

dρ

dΨ

dΨ√
Er −Ψ

=
1

π2
√

8

[∫ Er

0

d2ρ

dΨ2

dΨ√
Er −Ψ

+
1√
Er

(
dρ

dΨ

)
Ψ=0

]
This is an alternate method, begininning with measuring ρ(r) from
surface photometry. Find Ψ(r) = −Φ(r) = GM(< r)/r from ρ(r), then
eliminate r to find ρ(Ψ).
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