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Measuring Central Black-Hole Masses:
Direct vs. Indirect Methods

* Direct methods: based on dynamics of
gas or stars accelerated by the central
black hole.

— Stellar dynamics, gas dynamics,
reverberation mapping

* Indirect methods: based on observables
correlated with the mass of the central
black hole.

— Mgy—o-and Mgy—L, 46 relationships,

fundamental plane, AGN scaling
relationships (Rg r—L)



Primary and Secondary Methods

 Depends on model-dependent assumptions
required.

* Fewer assumptions, little model dependence:

— Proper motions/radial velocities of stars and
megamasers (Sgr A*, NGC 4258)

* More assumptions, more model dependence:

— Stellar dynamics, gas dynamics, reverberation
mapping
« Since the reverberation mass scale currently depends on

other “primary direct” methods for a zero point, it is currently

technically a “secondary method” though it is a “direct
method.”

* |t will soon become a primary method.



Early Mass Estimates:
The Eddington Limit
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« QOutward radiation pressure cannot
exceed gravity.
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The Broad-Line
Region

1000 < FWHM < 25,000
km s~ = motion in deep
potential?

- M~rAV 3G

« Spectra = Photoionized
gasat T~ 104K

* Absence of forbidden
lines implies high density

— But C Il A1909 = n, <
1010 cm-3
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The (Dimensionless) lonization
Parameter U

Rate at which H-ionizing photons

are emitted by source.

Ratio of ionizing photon density

at distance r from source to

particle density.

Aside:
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Photoionization Model of the BLR
iIn NGC 4151

« Single-cloud model cannot
simultaneously fit low and
high-ionization lines.

* Energy budget problem: line
luminosities require more than
100% of the continuum
energy.

« Single-cloud models predict
size of BLR of order light year
in bright Seyfert galaxies.

NGC 4151 BLR
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Emission-Line

Variability in Seyfert 1s

First detected reported by Andrillat &
Souffrin (1968) in NGC 3516

Second case (NGC 1566) found by
Pastoriza & Gerola (1970)
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Emission-Line Variabllity

* Only very large changes
could be detected
photographically or with
intensified television-type
scanners (e.g., Image
Dissector Scanners).

« Changes that were
observed were often
dramatic and reported as
Seyferts “changing type”
as broad components
appeared or disappeared.

Tohline & Osterbrock 1976
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First Monitoring Programs

NGC 4151:
Monitored at Lick
Observatory by
Antonucci and
Cohen in 1980-81

— short time scale
response of Balmer
lines (<1 month)

— higher amplitude
variability of higher-
order Balmer lines
and He 11 A4686
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First Monitoring Programs
* Akn 120:

— Monitored in optical by A B B B
Peterson et al. (1983; 1985).  us| ; 4 % -

* Hp response time suggested
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Reverberatlon Mapplng

£ Mrk 335 e
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Emission line variations follow those in continuum with a small
time delay (14 days here) due to light-travel time across the

line emitting region.
13
Grier+ 2012, ApJd, 744, L4



Velocity-Delay Map
for an Edge-On Ring

* Clouds at intersection of
iIsodelay surface and orbit
have line-of-sight velocities
V=2V, sin 6.

 Response time is
T =(1+ cos 0)r/c

« Circular orbit projects to an
ellipse in the (V, 1) plane.

Isodelay surface

«<—To observer

Time delay

T = (1l+cost) ric

V=V, sin0

|
_Vnrh

Line—of—sight velocity V (km/s)
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To observer

Velocity-Delay Map

Configuration space Velocity-delay space

®
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Doppler velocity

15




Thick Geometries

 (Generalization to a disk or
thick shell is trivial.

 General result is illustrated

with simple two ring system.
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Time after continuum outburst

“Isodelay surface™—

Time
delay

Velocity (km s~ )

Broad-line region -
as a diSk, velocity (km s~ 1)

2-20 light days Line profile at
current time delay

Black hole/accretion disk



Reverberation Response of an

Emission Line to a Variable Continuum
The relationship between the continuum and emission

can be taken to be: QF T
L(V.t) =¥V, 7)Clt-r)dr  *
Velocity-resolved “Velocity- Continuum ;;; o
emission-line  delay map” light curve N
light curve
Velocity-delay map is observed line
response to a o-function outburst R R
V (km/s)
Required time sampling, duration, and Arp 151

S/N makes velocity-delay map recovery LAMP: Bentz+ 2010
very difficult. "
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A Complex Multicomponent Broad-
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Emission-Line Lags

» Because the data requirements are relatively modest,
It is most common to determine the cross-correlation
function and obtain the “lag” (mean response time):

CCF(7) = j ¥(7') ACF(z-7')d7’
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Reverberation
Mapping Results

* Reverberation lags
have been measured
for ~50 AGNSs,
mostly for Hp, but in
some cases for
multiple lines.

 AGNSs with lags for
multiple lines show
that highest
lonization emission
lines respond most
rapidly = ionization
stratification
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Measuring the Emission-Line
Widths

fue 0 1« We preferentially
' ] measure line widths in
the rms residual

_ | | spectrum.
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s 12 that is responding to
4800 5000 5200 4600 4800 5000 5200 Contlnuum Varlatlons

Grier+ 2012, ApJ, 755:60
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Reverberation-Based Masses

“Virial Product” (units of mass)

M., =flrAV? /G

A

Observables:
r = BLR radius (reverberation)
AV = Emission-line width

Set by geometry and inclination
(subsumes everything we don’t know)

If we have independent measures of Mgy, we
can compute an ensemble average <f > 25



Black hole mass (M__)

he AGN Mg,—o- Relationship

S

1 010

* Assume zero point of
most recent quiescent
galaxy calibration.

g
KL

10°

10° T
ST _
T = +
) %%ﬁﬁ f>=4.19+1.08
wk —F S « Maximum likelihood
T — places an upper limit on
Bulge velocity dispersion &, (km/sec) intrin Si C S C att er
® AGN Alog Mgy, ~ 0.40 dex.
o AGN, new H-band o. — Consistent with

® Quiescent galaxy _ _
gquiescent galaxies.

Grier+ 2013, ApJ, 773:90
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M, (solar units}

10°

10° |

10 =

The AGN Mgy—L,,,4c Relationship

E_ Intrinsic scatter ~ 0.17 dex

IIII| 1 IIIIII|
¥, = 2.82

1012

* Line shows best-fit to
guiescent galaxies

1+« Maximum likelihood

gives upper limit to
Intrinsic scatter
Alog Mg, ~ 0.17 dex.

— Smaller than
quiescent galaxies
(Alog Mgy, ~ 0.38 dex).
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Black Hole Mass Measurements
(units of 10° M)

Galaxy NGC 4258 |[NGC 3227 |NGC 4151
Direct methods:

Megamasers 38.2+0.1 N/A N/A
Stellar dynamics 33 £ 2 7-20 471 1
Gas dynamics 25 — 260 20%10_, 30%7->
Reverberation N/A 7.63 1.7 46 £ 5

Quoted uncertainties are statistical only, not systematic.

References: see Peterson (2010) [arXiv:1001.3675]
T Onken et al., in preparation




Masses of Black Holes in Quasars

« Stellar and gas dynamics
requires higher angular
resolution to proceed
further.

— Even a 30-m telescope will
not vastly expand the
number of AGNs with a
resolvable r.

 Reverberation is the
future path for direct AGN
black hole masses.

— Trade time resqlution for
angular resolution.

— _Downgide: resource
Intensive.

My, (solar masses)
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» Quiescent galaxies
* RM AGNs
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Masses of Black Holes in Quasars

« Stellar and gas dynamics

requ”'es h|gher angular 102 I L B AR [ "",H' T
reSO|UtI0n tO proceed r, resolved i ) E -
further. 10 A ( ”},;?ji )

— Even a 30-m telescope will (1) )

not vastly expand the
number of AGNs with a
resolvable r.

My, (solar masses)

* Reverberation is the 1
future path for direct AGN '
black hole masses. R

- .-
| fflllllll ] IIIIIII| ] IIIIIII| ]

i ) . ) 1¢° 1¢°
To significantly increase number of D, (Mpo
measured masses, we needtogoto § .
lescent galaxies
secondary methods. AGNs
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4 :
NGC 4051 Mrk 79 PG 0953+414
z = 0.00234 z =0.0222 z=0.234
log L,,; =41.8 log Lo = 43.7 log L = 49.1

Reverberation experiments use large spectrograph

apertures for accurate spectrophotometry.
This results in significant starlight contribution to

the measured optical luminosity.



The R-L Relation -«
Empirical slope ~0.55 + 0.03 10
Intrinsic scatter ~0.13 dex ;
Typical error bars on best :
reverberation data ~0.09 dex e o {M e
Conclusion: for H3 over the R e
calibrated range (41.5 < log | oot )
Lsig0 (€rgs s7') <45 at z ~ 0), T W ]
R-L is nearly as effective as | ]
reverberation. ¢ il

Bentz+ 2013 n—|4[L L




Independent confirmation :—F4——————————

of R—L from microlensing,
iIncluding high-ionization
lines. )
-
©
o 2
s
e
20
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i RM measurements, v >
low ionization lines BT :
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O] Microlensing, Q 71 5
Low-ionization lines % =
o =
RM measurements,
high-ionization lines S S S S NS SR
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high-ionization lines

Guerras, Kochanek + 2013
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m, (mag)

m (HP) (mag)

And now for something
completely different.

It's...
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Narrow Emission-Line Variability in

F([O III] A5007)
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Narrow Emission-Line Variability in
NGC 5548

2R
Tsmooth = ( NLR j-l— (—1 j
C neO[B

Light-travel
time

Recombination
timescale

« Size of narrow-line region
constrained to 1-3 pc

« Density ~ 10° cm3

« Second credible detection
of [O ] variability (3C
390.3 by Zheng+ 1995),
but first to measure Ry r

Ryr (pc)

0.1 e

n, (cm™)

Peterson+, on astro-ph today .



Narrow Emission-Line Variability in
NGC 5548

1990 1995 2000 2005 2010

: W“V”*””Wﬁ* W
: tWW&V*¢WWW*“M% ‘

JD (2400000+)
Requires recalibration of long-term light curves,

but doesn’t affect any reverberation results to date.

Peterson+, on astro-ph today 37



To Conclude

* Reverberation mapping has reached a level of
maturity:
— BH masses becoming increasingly reliable, typically

0.3-0.4 dex over a range of more than 3 orders of
magnitude

— Beginning to probe BLR structure/kinematics
 All maps so far show evidence for infall in the Balmer lines

— We are preparing a new UV RM program (180 orbits)
for execution in Cycle 21 with HST. Goal: first high-
fidelity UV velocity-delay maps.

— Techniques that can be applied on “industrial scales”
are under development.
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