
Chapter 2

Stellar Dynamics in Galaxies

2.1 Introduction

A system of stars behaves like a fluid, but one with unusual properties. In a normal
fluid two-body interactions are crucial in the dynamics, but in contrast star-star en-
counters are very rare. Instead stellar dynamics is mostly governed by the interaction
of individual stars with the mean gravitational field of all the other stars combined.
This has profound consequences for how the dynamics of the stars within galaxies are
described mathematically, allowing for some considerable simplifications.

This chapter establishes some basic results relating to the motions of stars within
galaxies. The virial theorem provides a very simple relation between the total potential
and kinetic energies of stars within a galaxy, or other system of stars, that has settled
down into a steady state. The virial theorem is derived formally here. The timescale for
stars to cross a system of stars, known as the crossing time, is a simple but important
measure of the motions of stars. The relaxation time measures how long it takes for
two-body encounters to influence the dynamics of a galaxy, or other system of stars.
An expression for the relaxation time is derived here, which is then used to show that
encounters between stars are so rare within galaxies that they have had little effect
over the lifetime of the Universe.

The motions of stars within galaxies can be described by the collisionless Boltzmann
equation, which allows the numbers of stars to be calculated as a function of position
and velocity in the galaxy. The equation is derived from first principles here. Similarly,
the Jeans Equations relate the densities of stars to position, velocity, velocity dispersion
and gravitational potential.

2.2 The Virial Theorem

2.2.1 The basic result

Before going into the main material on stellar dynamics, it is worth stating – and
deriving – a basic principle known as the virial theorem. It states that for any system
of particles bound by an inverse-square force law, the time-averaged kinetic energy
〈T 〉 and the time-averaged potential energy 〈U〉 satisfy

2 〈T 〉 + 〈U〉 = 0 , (2.1)
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for a steady equilibrium state. 〈T 〉 will be a very large positive quantity and 〈U〉 a
very large negative quantity. Of course, for a galaxy to hold together, the total energy
〈T 〉+ 〈U〉 < 0 ; the virial theorem provides a much tighter constraint than this alone.
Typically, 〈T 〉 and −〈U〉 ∼ 1050 to 1054 J for galaxies.

In practice, many systems of stars are not in a perfect final steady state and the
virial theorem does not apply exactly. Despite this, it does give important, approxi-
mate results for many astronomical systems.

The virial theorem was first devised by Rudolf Clausius (1822–1888) to describe
motions of particles in thermodynamics. The term virial comes from the Latin word
for force, vis.

2.2.2 Deriving the virial theorem from first principles

To prove the virial theorem, consider a system of N stars. Let the ith star have a mass
mi and a position vector xi. The position vector will be measured from the centre of
mass of the system, and we shall assume that this centre of mass moves with uniform
motion. The velocity of the ith star is ẋi ≡ dxi/dt, where t is the time.
Consider the moment of inertia I of this system of stars defined here as

I ≡
N
∑

i=1

mi xi.xi =

N
∑

i=1

mi x
2
i . (2.2)

(Note that this is a different definition of moment of inertia to the moment of inertia
about a particular axis that is used to study the rotation of bodies about an axis.)
Differentiating with respect to time t,

dI

dt
=

d

dt

(

∑

i

mi xi.xi

)

=
∑

i

d

dt

(

mi xi.xi

)

=
∑

i

mi
d

dt

(

xi.xi

)

assuming that the masses mi do not change

=
∑

i

mi

(

ẋi.xi + xi.ẋi

)

from the product rule

= 2
∑

i

mi ẋi.xi

Differentiating again,

d2I

dt2
= 2

d

dt

∑

i

mi ẋi.xi = 2
∑

i

d

dt

(

mi ẋi.xi

)

= 2
∑

i

mi
d

dt

(

ẋi.xi

)

= 2
∑

i

mi

(

ẍi.xi + ẋi.ẋi

)

= 2
∑

i

mi ẍi.xi + 2
∑

i

mi ẋi
2 (2.3)

The kinetic energy of the ith particle is 1
2
miẋi

2. Therefore the total kinetic energy of
the entire system of stars is

T =
∑

i

1
2
mi ẋ

2
i ∴

∑

i

mi ẋ
2
i = 2T
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Substituting this into Equation 2.3,

d2I

dt2
= 4T + 2

∑

i

mi ẍi.xi , (2.4)

at any time t.
We now need to remember that the average of any parameter y(t) over time t = 0 to
τ is

〈y〉 =
1

τ

∫ τ

0

y(t) dt

Consider the average value of d2I/dt2 over a time interval t = 0 to τ .

〈

d2I

dt2

〉

=
1

τ

∫ τ

0

(

4T + 2
∑

i

mi ẍi.xi

)

dt

=
4

τ

∫ τ

0

T dt +
2

τ

∫ τ

0

∑

i

mi ẍi.xi dt

= 4 〈T 〉 + 2
∑

i

mi

τ

∫ τ

0

ẍi.xi dt assuming mi is constant over time

= 4 〈T 〉 + 2
∑

i

mi 〈ẍi.xi〉 (2.5)

When the system of stars eventually reaches equilibrium, the moment of inertia I
will be constant. So, 〈d2I/dt2〉 = 0. An alternative way of visualising this is by
considering that I will be bounded in any physical system and d2I/dt2 will also
be finite. Therefore the long-time average 〈d2I

dt2
〉 will vanish as τ becomes large, i.e.

limτ→∞〈d2I
dt2

〉 = limτ→∞( 1
τ

∫ τ

0
d2I
dt2

dt) → 0 because d2I/dt2 remains finite.

Substituting for 〈d2I/dt2〉 = 0 into Equation 2.5,

4 〈T 〉 + 2
∑

i

mi 〈ẍi.xi〉 = 0 .

∴ 2 〈T 〉 +
∑

i

mi 〈ẍi.xi〉 = 0 . (2.6)

The term
∑

imi 〈ẍi.xi〉 is related to the gravitational potential. We next need to show
how.

Newton’s Second Law of Motion gives for the ith star,

mi ẍi =
∑

j
j 6=i

Fij

where Fij is the force exerted on the ith star by the jth star. Using the law of universal
gravitation,

mi ẍi =
∑

j
j 6=i

− Gmimj

|xi − xj|3
(xi − xj) .

Taking the scalar product (dot product) with xi,

mi ẍi.xi =
(

∑

j
j 6=i

− Gmimj

|xi − xj|3
(xi − xj)

)

.xi
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Summing over all i,

∑

i

miẍi.xi = −
∑

i

∑

j
j 6=i

Gmimj

|xi − xj|3
(xi−xj).xi = −

∑

i,j
i6=j

Gmimj

|xi − xj|3
(xi−xj).xi

(2.7)
Switching i and j, we have

∑

j

mj ẍj.xj = −
∑

j,i
i6=j

Gmj mi

|xj − xi|3
(xj − xi).xj (2.8)

Adding Equations 2.7 and 2.8,

∑

i

miẍi.xi+
∑

j

mjẍj.xj = −
∑

i,j
i6=j

Gmimj

|xi − xj|3
(xi−xj).xi −

∑

i,j
i6=j

Gmj mi

|xj − xi|3
(xj−xi).xj

∴ 2
∑

i

mi ẍi.xi = −
∑

i,j
i6=j

Gmimj

|xi − xj|3
(

(xi − xj).xi + (xj − xi).xj

)

But

(xi − xj).xi + (xj − xi).xj = (xi − xj).xi − (xi − xj).xj

= (xi − xj).(xi − xj) (factorising)

= |xi − xj|2

∴ 2
∑

i

mi ẍi.xi = −
∑

i,j
i6=j

Gmimj

|xi − xj|3
|xi − xj|2

∴
∑

i

mi ẍi.xi = − 1

2

∑

i,j
i6=j

Gmimj

|xi − xj|
(2.9)

We now need to find the total potential energy of the system.
The gravitational potential at star i due to star j is

Φi j = − Gmj

|xi − xj|

Therefore the gravitational potential at star i due to all other stars is

Φi =
∑

j
j 6=i

Φi j =
∑

j
j 6=i

− Gmj

|xi − xj|

Therefore the gravitational potential energy of star i due to all the other stars is

Ui = mi Φi = − mi

∑

j
j 6=i

Gmj

|xi − xj|
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The total potential energy of the system is therefore

U =
∑

i

Ui =
1

2

∑

i









−mi

∑

j
j 6=i

Gmj

|xi − xj|









The factor 1
2

ensures that we only count each pair of stars once (otherwise we would
count each pair twice and would get a result twice as large as we should). Therefore,

U = − 1

2

∑

i,j
i6=j

Gmimj

|xi − xj|

Substituting for the total potential energy into Equation 2.9,

∑

i

mi ẍi.xi = U

Equation 2.6 uses time-averaged quantities. So, averaging over time t = 0 to τ ,

1

τ

∫ τ

0

∑

i

mi ẍi.xi dt = 〈U〉

∴
∑

i

mi
1

τ

∫ τ

0

ẍi.xi dt = 〈U〉

∴
∑

i

mi 〈 ẍi.xi 〉 = 〈U〉

Substituting this into Equation 2.6,

2 〈T 〉 + 〈U〉 = 0

This is Equation 2.1, the Virial Theorem.
It is also possible to rederive the virial theorem using tensors. This tensor virial

theorem uses a tensor moment of inertia and tensor representations of the kinetic and
potential energies. This is beyond the scope of this course.

2.2.3 Using the Virial Theorem

The virial theorem applies to systems of stars that have reached a steady equilibrium
state. It can be used for many galaxies, but can also be used for other systems such
as some star clusters. However, we need to be careful that we use the theorem only
for equilibrium systems.

The theorem can be applied, for example, to:

• elliptical galaxies

• evolved star clusters, e.g. globular clusters

• evolved clusters of galaxies (with the galaxies acting as the particles, not the
individual stars)

Examples of places where the virial theorem cannot be used are:
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• merging galaxies

• newly formed star clusters

• clusters of galaxies that are still forming/still have infalling galaxies

(Note that the virial theorem does also apply to stars or planets in circular orbits,
but we do not normally use it for these simple cases because a direct analysis based
on the acceleration is more straightforward.)

The virial theorem provides an easy way to make rough estimates of masses, be-
cause velocity measurements can give 〈T 〉. To do this we need to measure the observed
velocity dispersion of stars (the dispersion along the line of sight using radial velocities
obtained from spectroscopy). The theorem then gives the total gravitational potential
energy, which can provide the total mass. This mass, of course, is important because
it includes dark matter. Virial masses are particularly important for some galaxy
clusters (using galaxies, or atoms in X-ray emitting gas, as the particles).

But it is prudent to consider virial mass estimates as order-of-magnitude only,
because (i) generally one can measure only line-of-sight velocities, and getting T =
1
2

∑

imiẋ
2
i from these requires more assumptions (e.g. isotropy of the velocity distri-

bution); and (ii) the systems involved may not be in a steady state, in which case of
course the virial theorem does not apply — some clusters of galaxies are may be quite
far from a steady state.

Note that for galaxies beyond our own, we cannot measure three-dimensional ve-
locities of stars directly (although some projects are now achieving this for some Local
Group galaxies). We have to use radial velocities (the component of the velocity along
the line of sight to the galaxy) only, obtained from spectroscopy through the Doppler
shift of spectral lines. Beyond nearby galaxies, radial velocities of individual stars
become difficult to obtain. It becomes necessary to measure velocity dispersions along
the line of sight from the observed widths of spectral lines in the combined light of
millions of stars.

2.2.4 Deriving masses from the Virial Theorem: a naive ex-

ample

Consider a spherical elliptical galaxy of radius R that has uniform density and which
consists of N stars each of mass m having typical velocities v.
From the virial theorem,

2 〈T 〉 + 〈U〉 = 0

where 〈T 〉 is the time-averaged total kinetic energy and 〈U〉 is the average total po-
tential energy.
We have

T =
N
∑

i=1

1

2
mv2 =

1

2
Nmv2

and averaging over time, 〈T 〉 = 1
2
Nmv2 also. (Note that strictly speaking we are

taking the typical velocity to mean the root mean square velocity.)
The total gravitational potential energy of a uniform sphere of mass M and radius R
(a standard result) is

U = − 3

5

GM2

R
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where G is the universal gravitational constant. So the time-averaged potential energy
of the galaxy is

〈U〉 = − 3

5

GM2

R

where M is the total mass. Substituting this into the virial theorem equation,

2

(

1

2
Nmv2

)

− 3

5

GM2

R
= 0

But the total mass is M = Nm.

∴ v2 =
3

5

NGm

R
=

3

5

GM

R

The calculation is only approximate, so we shall use

v2 ' NGm

R
' GM

R
. (2.10)

This gives the mass to be

M ' v2R

G
. (2.11)

So an elliptical galaxy having a typical velocity v = 350 km s−1 = 3.5 × 105 m s−1,
and a radius R = 10 kpc = 3.1 × 1020 m, will have a mass M ∼ 6 × 1041 kg ∼
3 × 1011M�.

2.2.5 Example: the fundamental plane for elliptical galaxies

We can derive a relationship between scale size, central surface brightness and central
velocity dispersion for elliptical galaxies that is rather similar to the fundamental plane,
using only assumptions about a constant mass-to-light ratio and a constant functional
form for the surface brightness profile.

We shall assume here that:

• the mass-to-light ratio is constant for ellipticals (all E galaxies have the same
M/L regardless of their size or mass), and

• elliptical galaxies have the same functional form for the mass distribution, only
scalable.

Let I0 be the central surface brightness and R0 be a scale size of a galaxy (in this case,
different galaxies will have different values of I0 and R0). The total luminosity will be

L ∝ I0 R
2
0 ,

because I0 is the light per unit projected area. Since the mass-to-light ratio is a
constant for all galaxies, the mass of the galaxy is M ∝ L .

∴ M ∝ I0 R
2
0 .

From the virial theorem, if v is a typical velocity of the stars in the galaxy

v2 ' GM

R0
.
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The observed velocity dispersion along the line sight, σ0, will be related to the typical
velocity v by σ0 ∝ v (because v is a three-dimensional space velocity). So

σ2
0 ∝ M

R0
. ∴ M ∝ σ2

0 R0 .

Equating this with M ∝ I0 R
2
0 from above, σ2

0 R0 ∝ I0 R
2
0 .

∴ R0 I0 σ
−2
0 ' constant .

This is close to, but not the same, as the observed fundamental plane result R0 I
0.8
0 σ−1.3

0

' constant. The deviation from this virial prediction probably has something to do
with a varying mass-to-light ratio, and may be caused by differences in ages between
galaxies causing differences in luminosity.

2.3 The Crossing Time, Tcross

The crossing time is a simple, but important, parameter that measures the timescale
for stars to move significantly within a system of stars. It is sometimes called the
dynamical timescale.

It is defined as

Tcross ≡ R

v
, (2.12)

where R is the size of the system and v is a typical velocity of the stars.
As a simple example, consider a stellar system of radius R (and therefore an overall

size 2R), having N stars each of mass m; the stars are distributed roughly homoge-
neously, with v being a typical velocity, and the system is in dynamical equilibrium.
Then from the virial theorem,

v2 ' NGm

R
.

The crossing time is then

Tcross ≡ 2R

v
' 2R

√

NGm
R

' 2

√

R3

NGm
. (2.13)

But the mass density is

ρ =
Nm
4
3
πR3

=
3Nm

4πR3
.

∴
R3

Nm
=

3

4πρ
.

∴ Tcross = 2

√

3

4πGρ

So approximately,

Tcross ∼ 1√
Gρ

. (2.14)

Although this equation has been derived for a particular case, that of a homogeneous
sphere, it is an important result and can be used for order of magnitude estimates in
other situations. (Note that ρ here is the mass density of the system, averaged over a
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volume of space, and not the density of individual stars.)

Example: an elliptical galaxy of 1011 stars, radius 10 kpc.

R ' 10 kpc ' 3.1 × 1020 m

N = 1011

m ' 1 M� ' 2 × 1030 kg

Tcross ' 2

√

R3

NGm
gives Tcross ' 1015 s ' 108 yr.

The Universe is 14 Gyr old. So if a galaxy is ' 14 Gyr old, there are ' few × 100
crossing times in a galaxy’s lifetime so far.

2.4 The Relaxation Time, Trelax

The relaxation time is the time taken for a star’s velocity v to be changed significantly
by two-body interactions. It is defined as the time needed for a change ∆v2 in v2 to
be the same as v2, i.e. the time for

∆v2 = v2 . (2.15)

To estimate the relaxation time we need to consider the nature of encounters between
stars in some detail.

2.5 Star-Star Encounters

2.5.1 Types of encounters

We might expect that stars, as they move around inside a galaxy or other system
of stars, will experience close encounters with other stars. The gravitational effects
of one star on another would change their velocities and these velocity perturbations
would have a profound effect on the overall dynamics of the galaxy. The dynamics of
the galaxy might evolve with time, as a result only of the internal encounters between
stars.

The truth, however, is rather different. Close star-star encounters are extremely
rare and even the effects of distant encounters are so slight that it takes an extremely
long time for the dynamics of galaxies to change substantially.

We can consider two different types of star-star encounters:

• strong encounters – a close encounter that strongly changes a star’s velocity –
these are very rare in practice

• weak encounters – occur at a distance – they produce only very small changes in
a star’s velocity, but are much more common
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2.5.2 Strong encounters

A strong encounter between two stars is defined so that we have a strong encounter
if, at the closest approach, the change in the potential energy is larger than or equal
to the initial kinetic energy.

For two stars of mass m that approach to a distance r0, if the change in potential
energy is larger than than initial kinetic energy,

Gm2

r0
≥ 1

2
mv2 ,

where v is the initial velocity of one star relative to the other.

∴ r0 ≤ 2Gm

v2
.

So we define a strong encounter radius

rS ≡ 2Gm

v2
. (2.16)

A strong encounter occurs if two stars approach to within a distance rS ≡ 2Gm/v2.
For an elliptical galaxy, v ' 300 kms−1. Using m = 1M�, we find that rS '

3×109 m ' 0.02 AU. This is a very small figure on the scale of a galaxy. The typical
separation between stars is ∼ 1 pc ' 200 000 AU.

For stars in the Galactic disc in the solar neighbourhood, we can use a velocity
dispersion of v = 30 kms−1 and m = 1M�. This gives rS ' 3 × 1011 m ' 2 AU.
This again is very small on the scale of the Galaxy.

So strong encounters are very rare. The mean time between them in the Galactic
disc is ∼ 1015 yr, while the age of the Galaxy is ' 13 × 109 yr. In practice, we can
ignore their effect on the dynamics of stars.

2.5.3 Distant weak encounters between stars

A star experiences a weak encounter if it approaches another to a minimum distance
r0 when

r0 > rS ≡ 2Gm

v2
(2.17)

where v is the relative velocity before the encounter andm is the mass of the perturbing
star. Weak encounters in general provide only a tiny perturbation to the motions of
stars in a stellar system, but they are so much more numerous than strong encounters
that they are more important than strong encounters in practice.

We shall now derive a formula that expresses the change δv in the velocity v during
a weak encounter (Equation 2.19 below). This result will later be used to derive an
expression for the square of the velocity change caused by a large number of weak
encounters, which will then be used to obtain an estimate of the relaxation time in a
system of stars.

Consider a star of mass ms approaching a perturbing star of mass m with an impact
parameter b. Because the encounter is weak, the change in the direction of motion
will be small and the change in velocity will be perpendicular to the initial direction
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of motion. At any time t when the separation is r, the component of the gravitational
force perpendicular to the direction of motion will be

Fperp =
Gmsm

r2
cosφ ,

where φ is the angle at the perturbing mass between the point of closest approach
and the perturbed star. Let the component of velocity perpendicular to the initial
direction of motion be vperp and let the final value be vperp f .

Making the approximation that the speed along the trajectory is constant, r '√
b2 + v2t2 at time t if t = 0 at the point of closest approach. Using cos φ = b/r '

b/
√
b2 + v2t2 and applying F = ma perpendicular to the direction of motion we

obtain
dvperp

dt
=

Gm b

(b2 + v2t2)3/2
,

where vperp is the component at time t of the velocity perpendicular to the initial
direction of motion. Integrating from time t = −∞ to ∞,

[

vperp

]vperp f

0
= Gm b

∫ ∞

−∞

dt

(b2 + v2t2)3/2
.

We have the standard integral
∫∞

−∞
(1 + s2)−3/2 ds = 2 (which can be shown using

the substitution s = tanx). Using this standard integral, the final component of the
velocity perpendicular to the initial direction of motion is

vperpf =
2Gm

bv
. (2.18)

Because the deflection is small, the change of velocity is δv ≡ |δv| = vperp f . Therefore
the change in the velocity v is given by

δv =
2Gm

bv
, (2.19)

where G is the constant of gravitation, b is the impact parameter and m is the mass
of the perturbing star.
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As a star moves through space, it will experience a number of perturbations caused
by weak encounters. Many of these velocity changes will cancel, but some net change
will occur over time. As a result, the sum over all δv will remain small, but the
sum of the squares δv2 will build up with time. It is this change in v2 that we need
to consider in the definition of the relaxation time (Equation 2.15). Because the
change in velocity δv is perpendicular to the initial velocity v in a weak encounter,
the change in v2 is therefore δv2 ≡ v2

f −v2 = |v+ δv|2−v2 = (v+ δv).(v+ δv)−v2 =
v.v + 2v.δv + δv.δv − v2 = 2v.δv + (δv)2 = (δv)2, where vf is the final velocity of
the star. The change in v2 resulting from a single encounter that we need to consider
is

δv2 =

(

2Gm

bv

)2

. (2.20)

Consider all weak encounters occurring in a time period t that have impact parameters
in the range b to b + db within a uniform spherical system of N stars and radius R.

The volume swept out by impact parameters b to b + db in time t is 2 π b db v t.
Therefore the number of stars encountered with impact parameters between b and
b+ db in time t is

(volume swept out) (number density of stars) =
(

2 π b db v t
) N

4
3
πR3

=
3 b v tN db

2R3

The total change in v2 caused by all encounters in time t with impact parameters in
the range b to b+ db will be

∆v2 =

(

2Gm

bv

)2 (
3 b v tN db

2R3

)

Integrating over b, the total change in a time t from all impact parameters from bmin

to bmax is

∆v2(t) =

∫ bmax

bmin

(

2Gm

bv

)2 (
3 b v tN db

2R3

)

=
3

2

(

2Gm

v

)2
v tN

R3

∫ bmax

bmin

db

b
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∴ ∆v2(t) = 6

(

Gm

v

)2
v tN

R3
ln

(

bmax

bmin

)

. (2.21)

It is sometimes useful to have an expression for the change in v2 that occurs in one
crossing time. In one crossing time Tcross = 2R/v, the change in v2 is

∆v2(Tcross) = 6

(

Gm

v

)2
v

R3

(

2R

v

)

N ln

(

bmax

bmin

)

= 12N

(

Gm

Rv

)2

ln

(

bmax

bmin

)

. (2.22)

The maximum scale over which weak encounters will occur corresponds to the size of
the system of stars. So we shall use bmax ' R.

∆v2(Tcross) = 12N

(

Gm

Rv

)2

ln

(

R

bmin

)

. (2.23)

We are more interested here in the relaxation time Trelax. The relaxation time is
defined as the time taken for ∆v2 = v2. Substituting for ∆v2 from Equation 2.21 we
get,

6

(

Gm

v

)2
v TrelaxN

R3
ln

(

bmax

bmin

)

= v2 .

∴ Trelax =
1

6N ln
(

bmax

bmin

)

(Rv)3

(Gm)2
, (2.24)

or putting bmax ' R,

Trelax =
1

6N ln
(

R
bmin

)

(Rv)3

(Gm)2
. (2.25)

Equation 2.25 enables us to estimate the relaxation time for a system of stars,
such as a galaxy or a globular cluster. Different derivations can have slightly different
numerical constants because of the different assumptions made.

In practice, bmin is often set to the scale on which strong encounters begin to
operate, so bmin ' 1 AU. The precise values of bmax and bmin have relatively little
effect on the estimation of the relaxation time because of the log dependence.

As an example of the calculation of the relaxation time, consider an elliptical galaxy.
This has: v ' 300 kms−1 = 3.0× 105 ms−1, N ' 1011, R ' 10 kpc ' 3.1× 1020 m and
m ' 1 M� ' 2.0 × 1030 kg. So, ln(R/bmin) ' 21 and Trelax ∼ 1024 s ∼ 1017 yr. The
Universe is 14 × 109 yr old, which means that the relaxation time is ∼ 108 times the
age of the Universe. So star-star encounters are of no significance for galaxies.

For a large globular cluster, we have: v ' 10 kms−1 = 104 ms−1, N ' 500 000,
R ' 5 pc ' 1.6 × 1017 m and m ' 1 M� ' 2.0 × 1030 kg. So, ln(R/bmin) ' 15 and
Trelax ∼ 5 × 1015 s ∼ 107 yr. This is a small fraction (10−3) of the age of the Galaxy.
Two body interactions are therefore significant in globular clusters.

The importance of the relaxation time calculation is that it enables us to decide
whether we need to allow for star-star interactions when modelling the dynamics of a
system of stars. This is discussed further in Section 2.7 below.
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2.6 The Ratio of the Relaxation Time to the Cross-

ing Time

An approximate expression for the ratio of the relaxation time to the crossing time
can be calculated easily. Dividing the expressions for the relaxation and crossing times
(Equations 2.25 and 2.12),

Trelax

Tcross

=
1

12N ln
(

R
bmin

)

R2v4

(Gm)2
.

For a uniform sphere, from the virial theorem (Equation 2.10),

v2 ' NGm

R

and setting bmin equal to the strong encounter radius rS = 2GM/v2 (Equation 2.16),
we get,

Trelax

Tcross

=
1

12N ln
(

Rv2

2GM

)

R2v4

(Gm)2
' N2

12N ln(N)

∴
Trelax

Tcross

' N

12 lnN
. (2.26)

For a galaxy, N ∼ 1011. Therefore Trelax/Tcross ∼ 109. For a globular cluster, N ∼ 105

and Trelax/Tcross ∼ 103.

2.7 Collisional and Collisionless Systems

It is possible to classify the dynamics of systems of matter according to whether the in-
teractions of individual particles in those systems are important or not. Such systems
are said to be either collisional or collisionless. The dynamics are of these systems are:

• collisional if interactions between individual particles substantially affect their
motions;

• collisionless if interactions between individual particles do not substantially af-
fect their motions.

Note that this definition was encountered in Chapter 1 relating to the encounters
between different systems. Here it applies within a single system of mass: the effects
are all internal to the system.

The relaxation time calculations showed that galaxies are in general collisionless

systems. (But an exception to this might be the region around the central nuclei of
galaxies where the density of stars is very large.) Globular clusters are collisional

over the lifetime of the Universe. Gas, whether in galaxies or in the laboratory, is
collisional.

Modelling becomes much easier if two-body encounters can be ignored. Fortu-
nately, we can ignore these star-star interactions when modelling galaxies and this
makes possible the use of a result called the collisionless Boltzmann equation later.
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2.8 Violent Relaxation

Stars in galaxies are collisionless systems, as we have seen. Therefore, the stars in a
steady state galaxy will continue in steady state orbits without perturbing each other.
The average distribution of stars will not change with time.

However, the situation can be very different in a system that is not in equilibrium.
A changing gravitational potential will cause the orbits of the stars to change. Because
the stars determine the overall potential, the change in their orbits will change the
potential. This process of changes in the dynamics of stars caused by changes in their
net potential is called violent relaxation.

Galaxies experienced violent relaxation during their formation, and this was a
process that brought them to the equilibrium state that we see many of them in
today. Interactions between galaxies can also bring about violent relaxation. The
process takes place relatively quickly (∼ 108 yr) and redistributes the motions of
stars.

2.9 The Nature of the Gravitational Potential in a

Galaxy

The gravitational potential in a galaxy can be represented as essentially having two
components. The first of these is the broad, smooth, underlying potential due to the
entire galaxy. This is the sum of the potentials of all the stars, and also of the dark
matter and the interstellar medium. The second component is the localised deeper
potentials due to individual stars.

We can effectively regard the potential as being made of a smooth component with
very localised deep potentials superimposed on it. This is illustrated figuratively in
Figure 2.1.

Figure 2.1: A sketch of the gravitational potential of a galaxy, showing the broad
potential of the galaxy as a whole, and the deeper, localised potentials of individual
stars.

Interactions between individual stars are rare, as we have seen, and therefore it is
the broad distribution that determines the motions of stars. Therefore, we can repre-
sent the dynamics of a system of stars using only the smooth underlying component
of the gravitational potential Φ(x, t), where x is the position vector of a point and
t is the time. If the galaxy has reached a steady state, Φ is Φ(x) only. We shall
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neglect the effect of the localised potentials of stars in the following sections, which is
an acceptable approximation as we have shown.

2.10 Gravitational potentials, density distributions

and masses

2.10.1 General principles

The distribution of mass in a galaxy – including both the visible and dark matter –
determines the gravitational potential. The potential Φ at any point is related to the
local density ρ by Poisson’s Equation,

∇2Φ (≡ ∇.∇Φ) = 4π Gρ . (2.27)

This means that if we know the density ρ(x) as a function of position across a galaxy,
we can calculate the potential Φ, either analytically or numerically, by integration.
Alternatively, if we know Φ(x), we can calculate the density profile ρ(x) by differenti-
ation. In addition, because the acceleration due to gravity g is related to the potential
by g = −∇Φ, we can compute g(x) from Φ(x) and vice-versa. Similarly, substituting
for g = −∇Φ in the Poisson Equation gives ∇.g = − 4πGρ .

These computations are often done for some example theoretical representations
of the potential or density. A number of convenient analytical functions are encoun-
tered in the literature, depending on the type of galaxy being modelled and particular
circumstances.

The issue of determining actual density profiles and potentials from observations of
galaxies is much more challenging, however. Observations readily give the projected
density distributions of stars on the sky, and we can attempt to derive the three-
dimensional distribution of stars from this; this in turn can give the density of visible
matter ρ

V IS
(x) across the galaxy. However, it is the total density ρ(x), including dark

matter ρ
DM

(x), that is relevant gravitationally, with ρ(x) = ρ
DM

(x) + ρ
V IS

(x). The
dark matter distribution can only be inferred from the dynamics of visible matter
(or to a limited extent from gravitational lensing of background objects). In practice,
therefore, the three-dimension density distribution ρ(x) and the gravitational potential
Φ(x) are poorly known, particularly where dark matter dominates far from the central
regions.

2.10.2 Spherical symmetry

Calculating the relationship between density and potential is much simpler if we are
dealing with spherically symmetric distributions, which are appropriate in some cir-
cumstances such as spherical elliptical galaxies. Under spherical symmetry, ρ and Φ are
functions only of the radial distance r from the centre of the distribution. Therefore,

∇2Φ =
1

r2

d

dr

(

r2 dΦ

dr

)

= 4 π Gρ (2.28)

because Φ is independent of the angles θ and φ in a spherical coordinate system (see
Appendix C).
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Another useful parameter for spherically symmetric distributions is the mass M(r)
that lies inside a radius r. We can relate this to the density ρ(r) by considering a thin
spherical shell of radius r and thickness dr centred on the distribution. The mass of
this shell is dM(r) = ρ(r) × surface area × thickness = 4πr2ρ(r) dr. This gives us the
differential equation

dM

dr
= 4π r2 ρ , (2.29)

often known as the equation of continuity of mass. The total mass isMtot = limr→∞M(r).
The gravitational acceleration g in a spherical distribution has an absolute value

|g| of

g =
GM(r)

r2
, (2.30)

at a distance r from the centre, where G is the constant of gravitation (derived in
Appendix B), and is directed towards the centre of the distribution.

If we know how one of these functions (ρ, Φ or M(r)) depends on radial distance
r, we can calculate the others relatively easily when we have spherical symmetry. For
example, if know the potential Φ(r) as a function of r, we can differentiate it to get
the mass M(r) interior to r, and by differentiating it again we can get the density
ρ(r). On the other hand, if we know ρ(r) as a function of r, we can integrate it to get
M(r), and integrating it again gives Φ(r).

Comparing equations 2.28 and 2.29, we find that

M(r) =
r2

G

dΦ

dr
, (2.31)

when we have spherical symmetry. This allows us to convert between M(r) and Φ(r)
directly for this spherically symmetric case.

2.10.3 Two examples of spherical potentials

The Plummer Potential

A function that is often used for the theoretical modelling of spherically-symmetric
galaxies is the Plummer potential. This has a gravitational potential Φ at a radial
distance r from the centre that is given by

Φ(r) = − GMtot√
r2 + a2

, (2.32)

where Mtot is the total mass of the galaxy and a is a constant. The constant a serves
to flatten the potential in the core.

For this potential the density ρ at a radial distance r is

ρ(r) =
3Mtot

4π

a2

(r2 + a2)5/2
, (2.33)

which can be derived from the expression for Φ using the Poisson equation ∇2Φ =
4πGρ. This density scales with radius as ρ ∼ r−5 at large radii.

The mass interior to a point M(r) can be computed from the density ρ using
dM/dr = 4πr2ρ, or from the potential Φ using Gauss’s Law in the form

∫

S
∇Φ.dS =

4πGM(r) for a spherical surface of radius r. The result is

M(r) =
Mtot r

3

(r2 + a2)3/2
. (2.34)
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The Plummer potential was first used in 1911 by H. C. K. Plummer (1875–1946)
to describe globular clusters. Because of the simple functional forms, the Plummer
model is sometimes useful for approximate analytical modelling of galaxies, but the
r−5 density profile is much steeper than elliptical galaxies are observed to have.

The Dark Matter Profile

A density distribution that is often used in modelling galaxies is one that is sometimes
called the dark matter profile. The total density is given by

ρ(r) =
ρ0

1 + (r/a)2
=

ρ0 a
2

r2 + a2
, (2.35)

where ρ0 is the central density (ρ(r) at r = 0) and a is a constant. The mass interior
to a radius r is

M(r) = 4πρ0

∫ r

0

r′2

1 + r′2/a2
dr′ = 4πρ0 a

2 ( r − a tan−1(r/a) ) .

Spiral galaxies with this profile would have rotation curves that are flat for r � a,
which is exactly what is observed. This profile therefore represents successfully the
large amount of dark matter that is observed at large distances r from the centres
of galaxies. One weakness is that the mass interior to a radius tends to infinity as
r increases: limr→∞M(r) → ∞. In practice, therefore, the density profiles of real
galaxies must fall below the dark matter profile at some very large distances. These
issues are discussed further in Chapter 5.

The Isothermal Sphere

The density distribution known as the isothermal sphere is a spherical model of a
galaxy that is identical to the distribution that would be followed by a stable cloud of
gas having the same temperature everywhere. A spherically-symmetric cloud of gas
having a single temperature T throughout would have a gas pressure P (r) at a radius
r from its centre that is related to T by the ideal gas law as P (r) = npkBT , where
np(r) is the number density of gas particles (atoms or molecules) at radius r and kB

is the Boltzmann constant. This can also be expressed in terms of the density ρ as
P (r) = kBρ(r)T/mp, where mp is the mean mass of each particle in the gas.

The cloud will be supported by hydrostatic equilibrium, so therefore

dP

dr
= − GM(r)

r2
ρ(r) , (2.36)

where M(r) is the mass enclosed within a radius r. The gradient in the mass is
dM/dr = 4πr2ρ(r).

These equations have a solution

ρ(r) =
σ2

2πG r2
, and M(r) =

2σ2

G
r , where σ2 ≡ kBT

mp

, (2.37)

where mp is the mass of each gas particle. The parameter σ is the root-mean-square
velocity in any direction. This is only one of a number of solutions and it is called the
singular isothermal sphere.
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The isothermal sphere model for a system of stars is defined to be a model that has
the same density distribution as the isothermal gas cloud. Therefore, an isothermal
galaxy would also have a density ρ(r) and mass M(r) interior to a radius r given by

ρ(r) =
σ2

2πG r2
, and M(r) =

2σ2

G
r , (2.38)

for a singular isothermal sphere, where σ is root-mean-square velocity of the stars
along any direction.

The singular isothermal sphere model is sometimes used for the analytical mod-
elling of galaxies. While it has some advantages of simplicity, it does suffer from the
disadvantage of being unrealistic in some important respects. Most significantly, the
model fails totally at large radii: formally the limit of M(r) as r −→ ∞ is infinite.

2.11 Phase Space and the Distribution Function

f(x, v, t)

To describe the dynamics of a galaxy, we could use:

• the positions of each star, xi

• the velocities of each star, vi

where i = 1 to N , with N ∼ 106 to 1012. However, this would be impractical numeri-
cally.

If we tried to store these data on a computer as 4-byte numbers for every star in
a galaxy having N ∼ 1012 stars, we would need 6 × 4 × 1012 bytes ∼ 2 × 1013 bytes
∼ 20 000 Gbyte. This is such a large data size that the storage requirements are
prohibitive. If we needed to simulate a galaxy theoretically, we would need to follow
the galaxy over time using a large number of time steps. Storing the complete set of
data for, say, 103 − 106 time steps would be impossible. Observationally, meanwhile,
it is impossible to determine the positions and motions of every star in any galaxy,
even our own.

In practice, therefore, people represent the stars in a galaxy using the distribution

function f(x,v, t) over position x and velocity v, at a time t. This is the probability
density in the 6-dimensional phase space of position and velocity at a given time. It
is also known as the “phase space density”. It requires only modest data resources to
store the function numerically for a model of a galaxy, while f can also be modelled
analytically.

The number of stars in a rectangular box between x and x + dx, y and y + dy, z
and z + dz, with velocity components between vx and vx + dvx, vy and vy + dvy, vz

and vz + dvz, is f(x,v, t) dx dy dz dvx dvy dvz ≡ f(x,v, t) d3x d3v . The number
density n(x,v, t) of stars in space can be obtained from the distribution function f by
integrating over the velocity components,

n(x,v, t) =

∫ ∞

−∞

f(x,v, t) dvx dvy dvz =

∫ ∞

−∞

f(x,v, t) d3v . (2.39)
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2.12 The Continuity Equation

We shall assume here that stars are conserved: for the purpose of modelling galaxies
we shall assume that the number of stars does not change. This means ignoring star
formation and the deaths of stars, but it is acceptable for the present purposes.

The assumption that stars are conserved results in the continuity equation. This
expresses the rate of change in the distribution function f as a function of time to
the rates of change with position and velocity. The equation becomes an important
starting point in deriving other equations that relate f to the gravitational potential
and to observational quantities.

Consider the x − vx plane within the 6-dimensional phase space (x, y, z, vx, vy, vz)
in Cartesian coordinates. Consider a rectangular box in the plane extending from x
to x + ∆x and vx to vx + ∆vx.

But the velocity vx means that
stars move in x (vx ≡ dx/dt).
So there is a flow of stars through
the box in both the x and the vx

directions.

We can represent the flow of stars by the continuity equation:

∂f

∂t
+

∂

∂x

(

f
dx

dt

)

+
∂

∂y

(

f
dy

dt

)

+
∂

∂z

(

f
dz

dt

)

+
∂

∂vx

(

f
dvx

dt

)

+

∂

∂vy

(

f
dvy

dt

)

+
∂

∂vz

(

f
dvz

dt

)

= 0 . (2.40)
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This can be abbreviated as

∂f

∂t
+

3
∑

i=1

(

∂

∂xi

(

f
dxi

dt

)

+
∂

∂vi

(

f
dvi

dt

) )

= 0 , (2.41)

where x1 ≡ x, x2 ≡ y, x3 ≡ z, v1 ≡ vx, v2 ≡ vy, and v3 ≡ vz. It is sometimes also
abbreviated as

∂f

∂t
+

∂

∂x
.

(

f
dx

dt

)

+
∂

∂v
.

(

f
dv

dt

)

= 0 , (2.42)

where, in this notation, for any vectors a and b with components (a1, a2, a3) and
(b1, b2, b3),

∂

∂a
.b ≡

3
∑

i=1

∂bi
∂ai

. (2.43)

(Note that it does not mean a direct differentiation by a vector).
It is also possible to simplify the notation further by introducing a combined

phase space coordinate system w = (x,v) with components (w1, w2, w3, w4, w5, w6) =
(x, y, z, vx, vy, vz). In this case the continuity equation becomes

∂f

∂t
+

6
∑

i=1

∂

∂wi
(fẇi) = 0 . (2.44)

The equation of continuity can also be expressed in terms of the momentum p = mv,
where m is mass of an element of gas, as

∂f

∂t
+

∂

∂x
.

(

f
dx

dt

)

+
∂

∂p
.

(

f
dp

dt

)

= 0 . (2.45)

2.13 The Collisionless Boltzmann Equation

2.13.1 The importance of the Collisionless Boltzmann Equa-
tion

Equation 2.25 showed that the relaxation time for galaxies is very long, significantly
longer than the age of the Universe: galaxies are collisionless systems. This, fortu-
nately, simplifies the analysis of the dynamics of stars in galaxies.

It is possible to derive an equation from the continuity equation that more explicitly
states the relation between the distribution function f , position x, velocity v and time
t. This is the collisionless Boltzmann equation (C.B.E.), which takes its name from a
similar equation in statistical physics derived by Boltzmann to describe particles in a
gas. It states that

∂f

∂t
+

3
∑

i=1

(

dxi

dt

∂f

∂xi

+
dvi

dt

∂f

∂vi

)

≡ df

dt
= 0 . (2.46)

The collisionless Boltzmann equation therefore provides a relationship between the
density of stars in phase space for a galaxy with position x , stellar velocity v and
time t.

35



2.13.2 A derivation of the Collisionless Boltzmann Equation

The continuity equation (2.41) states that

∂f

∂t
+

3
∑

i=1

(

∂

∂xi

(

f
dxi

dt

)

+
∂

∂vi

(

f
dvi

dt

) )

= 0 ,

where f is the distribution function in the Cartesian phase space (x1, x2, x3, v1, v2, v3).
But the acceleration of a star is given by the gradient of the gravitational potential Φ:

dvi

dt
= − ∂Φ

∂xi

in each direction (i.e. for each value of i for i = 1, 2, 3). (This is simply dv/dt = g =
−∇Φ resolved into each dimension.)

We also have
dxi

dt
= vi, so,

∂f

∂t
+

3
∑

i=1

(

∂

∂xi

(fvi) +
∂

∂vi

(

−f ∂Φ
∂xi

) )

= 0 .

But vi is a coordinate, not a value associated with a particular star: we are using
the continuous function f rather than considering individual stars. Therefore vi is
independent of xi. So,

∂

∂xi
(fvi) = vi

∂f

∂xi
.

The potential Φ ≡ Φ(x, t) does not depend on vi: Φ is independent of velocity.

∴
∂

∂vi

(

f
dΦ

dxi

)

=
∂Φ

∂xi

∂f

∂vi

∴
∂f

∂t
+

3
∑

i=1

(

vi
∂f

∂xi

− ∂Φ

∂xi

∂f

∂vi

)

= 0 .

But
dvi

dt
= − ∂Φ

∂xi

, so,

∂f

∂t
+

3
∑

i=1

(

vi
∂f

∂xi
+

dvi

dt

∂f

∂vi

)

= 0 . (2.47)

This is the collisionless Boltzmann equation. It can also be written as

∂f

∂t
+

3
∑

i=1

(

dxi

dt

∂f

∂xi
+

dvi

dt

∂f

∂vi

)

= 0 . (2.46)

Alternatively it can expressed as,

∂f

∂t
+

6
∑

i=1

ẇi
∂f

∂wi

= 0 , (2.48)
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where w = (x,v) is a 6-dimensional coordinate system, and also as

∂f

∂t
+

dx

dt
.

∂f

∂x
+

dv

dt
.

∂f

∂v
= 0 , (2.49)

and as
∂f

∂t
+

dx

dt
.

∂f

∂x
+

dp

dt
.

∂f

∂p
= 0 . (2.50)

Note the use here of the notation

dx

dt
.

∂f

∂x
≡

3
∑

i=1

dxi

dt

∂f

∂xi
, etc. (2.51)

2.13.3 Deriving the Collisionless Boltzmann Equation using
Hamiltonian Mechanics

[This section is not examinable.]

The collisionless Boltzmann equation can also be derived from the continuity equa-
tion using Hamiltonian mechanics. This derivation is given here. It has the advantage
of being neat. However, do not worry if you are not familiar with Hamiltonian me-
chanics: this is given as an alternative to Section 2.13.2.

Hamilton’s Equations relate the differentials of the position vector x and of the
(generalised) momentum p to the differential of the Hamiltonian H:

dx

dt
=

∂H

∂p
,

dp

dt
= − ∂H

∂x
. (2.52)

(In this notation this means

dxi

dt
=

∂H

∂pi
and

dpi

dt
= − ∂H

∂xi
for i = 1 to 3, (2.53)

where xi and pi are the components of x and p.)
Substituting for dx/dt and dp/dt into the continuity equation,

∂f

∂t
+

∂

∂x
.

(

f
∂H

∂p

)

+
∂

∂p
.

(

− f
∂H

∂x

)

= 0 .

For a star moving in a gravitational potential Φ, the Hamiltonian is

H =
p2

2m
+ mΦ(x) =

p.p

2m
+ mΦ(x) . (2.54)
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where p is its momentum and m is its mass. Differentiating,

∂H

∂p
=

d

dp

(p.p

2m

)

+
d

dp
(mΦ)

=
p

m
+ 0 because Φ(x, t) is independent of p

=
p

m

and
∂H

∂x
=

∂

∂x

(

p2

2m

)

+ m
∂Φ

∂x

= 0 + m
∂Φ

∂x
because p2 = p.p is independent of x

= m
∂Φ

∂x
.

Substituting for ∂H/∂p and ∂H/∂x,

∂f

∂t
+

∂

∂x
.

(

f
p

m

)

− ∂

∂p
.

(

fm
∂Φ

∂x

)

= 0

∴
∂f

∂t
+

p

m
.

∂f

∂x
− m

∂Φ

∂x
.

∂f

∂p
= 0

because p is independent of x, and because ∂Φ/∂x is independent of p since Φ ≡
Φ(x, t).
But the momentum p = m dx/dt and the acceleration is 1

m
dp/dt = − ∂Φ/∂x (the

gradient of the potential).

∴
∂Φ

∂x
= − 1

m

dp

dt
.

So,
∂f

∂t
+

m

m

dx

dt
.

∂f

∂x
− m

(

− 1

m

dp

dt

)

.

∂f

∂p
= 0

∴
∂f

∂t
+

dx

dt
.

∂f

∂x
+

dp

dt
.

∂f

∂p
= 0 .

The left-hand side is the differential df/dt. So,

∂f

∂t
+

dx

dt
.

∂f

∂x
+

dp

dt
.

∂f

∂p
≡ df

dt
= 0 (2.55)

— the collisionless Boltzmann equation.
While this equation is called the collisionless Boltzmann equation (or CBE) in

stellar dynamics, in Hamiltonian dynamics it is known as Liouville’s theorem.

2.14 The implications of the Collisionless Boltz-

mann Equation

The collisionless Boltzmann equation tells us that df/dt = 0. This means that the
density in phase space, f , does not change with time for a test particle. Therefore if
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we follow a star in orbit, the density f in 6-dimensional phase space around the star
is constant.

This simple result has important implications. If a star moves inwards in a galaxy
as it follows its orbit, the density of stars in space increases (because the density of stars
in the galaxy is greater closer to the centre). df/dt = 0 then tells us that the spread
of stellar velocities around the star will increase to keep f constant. Therefore the
velocity dispersion around the star increases as the star moves inwards. The velocity
dispersion is therefore larger in regions of the galaxy where the density of stars is
greater. Conversely, if a star moves out from the centre, the density of stars around it
will decrease and the velocity dispersion will decrease to keep f constant.

The collisionless Boltzmann equation, and the Poisson equation (which is the grav-
itational analogue of Gauss’s law in electrostatics) together constitute the basic equa-
tions of stellar dynamics:

df

dt
= 0 , ∇2Φ(x) = 4πGρ(x) , (2.56)

where f is the distribution function, t is time, Φ(x, t) is the gravitational potential at
point x, ρ(x, t) is the mass density at point x, and G is the constant of gravitation.

The collisionless Boltzmann equation applies because star-star encounters do not
change the motions of stars significantly over the lifetime of a galaxy, as was shown in
Section 2.5. Were this not the case and the system were collisional, the CBE would
have to be modified by adding a “collisional term” on the right-hand side.

Though f is a density in phase space, the full form of the collisionless Boltzmann
equation does not necessarily have to be written in terms of x and p. We can express
df
dt

= 0 in any set of six variables in phase space. You should remember that f is
always taken to be a density in six-dimensional phase space, even in situations where
it is a function of fewer variables. For example, if f happens to be a function of energy
alone, it is not the same as the density in energy space.

2.15 The Collisionless Boltzmann Equation in Cylin-

drical Coordinates

[This section is not examinable.]

So far we have considered Cartesian coordinates (x, y, z, vx, vy, vz). However, the
form

∂f

∂t
+

3
∑

i=1

(

dxi

dt

∂f

∂xi

+
dvi

dt

∂f

∂vi

)

= 0 ,

for the collisionless Boltzmann equation of Equation 2.46 applies to any coordinate
system.

For a galaxy, it is often more convenient to use cylindrical coordinates with the
centre of the galaxy as the origin.
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The coordinates of a star are (R, φ, z). A cylindrical system is particularly useful
for spiral galaxies like our own where the z = 0 plane is set to be the Galactic plane.
(Note the use of a lower-case φ as a coordinate angle, whereas elsewhere we have used
a capital Φ to denote the gravitational potential.)

The collisionless Boltzmann equation in this system is

df

dt
=

∂f

∂t
+

dR

dt

∂f

∂R
+

dφ

dt

∂f

∂φ
+

dz

dt

∂f

∂z
+

dvR

dt

∂f

∂vR
+

dvφ

dt

∂f

∂vφ
+

dvz

dt

∂f

∂vz

= 0 , (2.57)

where vR, vφ, and vz are the components of the velocity in the R, φ, z directions.
We need to replace the differentials of the velocity components with more conve-

nient terms. dvR/dt, dvφ/dt and dvz/dt are related to the acceleration a (but are not
actually the components of the acceleration for the R and φ directions). The velocity
and acceleration in terms of these differentials in a cylindrical coordinate system are

v =
dr

dt
=

dR

dt
êR + R

dφ

dt
êφ +

dz

dt
êz

a =
dv

dt
=

(

d2R

dt2
−R

(

dφ

dt

)2
)

êR +

(

2
dR

dt

dφ

dt
+R

d2φ

dt2

)

êφ

+
d2z

dt2
êz (2.58)

where êR, êφ and êz are unit vectors in the R, φ and z directions (a standard re-
sult for any cylindrical coordinate system, and for any velocity, acceleration or force,
gravitational or any other kind: see Appendix C5). Representing the velocity as
v = vRêR + vφêφ + vzêz and equating coefficients of the unit vectors,

dR

dt
= vR ,

dφ

dt
=
vφ

R
,

dz

dt
= vz . (2.59)

The acceleration can be related to the gravitational potential Φ with a = −∇Φ (be-
cause the only forces acting on the star are those of gravity). In a cylindrical coordinate
system,

∇ ≡ êR
∂

∂R
+ êφ

1

R

∂

∂φ
+ êz

∂

∂z
. (2.60)
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Using this result and equating coefficients, we obtain,

d2R

dt2
−R

(

dφ

dt

)2

= − ∂Φ

∂R
, 2

dR

dt

dφ

dt
+R

d2φ

dt2
= − 1

R

∂Φ

∂φ
,

d2z

dt2
= − dΦ

dz

Rearranging these and substituting for dR/dt, dφ/dt and dz/dt from 2.59, we obtain,

dvR

dt
= − ∂Φ

∂R
+
v2

φ

R
, and

dvz

dt
= − ∂Φ

∂z
,

and with some more manipulation,

dvφ

dt
=

d

dt

(

R
dφ

dt

)

=
dR

dt

dφ

dt
+R

d2φ

dt2
= vR

vφ

R
+
(

− 1

R

∂Φ

∂φ
− 2

dR

dt

dφ

dt

)

=
vR vφ

R
− 1

R

∂Φ

∂φ
− 2 vR

vφ

R
= − 1

R

∂Φ

∂φ
− vR vφ

R
. (2.61)

Substituting these into Equation 2.57, we obtain,

df

dt
=

∂f

∂t
+ vR

∂f

∂R
+

vφ

R

∂f

∂φ
+ vz

∂f

∂z
+

(

v2
φ

R
− ∂Φ

∂R

)

∂f

∂vR

− 1

R

(

vRvφ +
∂Φ

∂φ

)

∂f

∂vφ

− ∂Φ

∂z

∂f

∂vz

= 0 , (2.62)

This is the collisionless Boltzmann equation in cylindrical coordinates. This form
relates f to observable parameters (R, φ, z, vR, vφ, vz) and the potential Φ.

In many practical cases, particularly spiral galaxies, Φ will be independent of φ,
so ∂Φ/∂φ = 0 (but not if we include spiral arms where the potential will be slightly
deeper).

2.16 Orbits of Stars in Galaxies

2.16.1 The character of orbits

The term orbit is used to describe the trajectories of stars within galaxies, even though
they are very different to Keplerian orbits such as those of planets in the Solar System.
The orbits of stars in a galaxy are usually not closed paths and in general they are
three dimensional (they do not lie in a plane). They are often complex. In general
they are highly chaotic, even if the galaxy is in equilibrium.

The orbit of a star in a spherical potential, to consider the simplest example, is
confined to a plane perpendicular to the angular momentum vector of the star. It is,
however, not a closed path and has an appearance that is usually described as a rosette.
In axisymmetric potentials (e.g. an oblate elliptical galaxy) the orbit is confined to a
plane that precesses. This plane is inclined to the axis of symmetry and rotates about
the axis. The orbit within the plane is similar to that in a spherical potential.

Triaxial potentials can have orbits that are much more complex. Triaxial potentials
often have the tendency to tumble about one axis, which leads to chaotic star orbits.
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Figure 2.2: An example of the orbit of a star in a spherical potential. An example star
has been put into an orbit in the x − y plane. Its orbit follows a “rosette” pattern,
but it remains in the x− y plane. [These diagrams were plotted using data generated
assuming a Plummer potential: the potential lacks a deep central cusp.]

Figure 2.3: The orbit of a star in a flattened (oblate) potential. An example star has
been put into an orbit inclined to the x − y plane. The galaxy is flattened in the z
direction with an axis ratio of 0.7. The orbit follows a “rosette” pattern, but the plane
of the orbit precesses. This illustrates the trajectory of a star in an oblate elliptical
galaxy, for example.

2.16.2 The chaotic nature of many orbits

In chaotic systems, stars that initially move along similar paths will diverge, eventually
moving along very different orbits. The divergence in their paths is exponential in time,
which is the technical definition of chaos in dynamical systems. Their motion shows
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Figure 2.4: The orbit of a star in a triaxial potential. An example star has been put
into an orbit inclined to the x−y plane. The galaxy has different dimensions (different
scale sizes) in each of the x, y and z directions. The orbit is complex and it maps out
a region of space. This illustrates the trajectory of a star in a triaxial elliptical galaxy,
for example. (This simulation extends over a longer time period than those of Figures
2.2 and 2.3.)

a stretching and folding in phase space. This can be so even if there is no collective
motion of stars at all (f in equilibrium).

This stretching and folding in phase space can be appreciated using an analogy.
When making bread, a baker’s dough behaves essentially as a fluid. Dough is in-
compressible, but that does not prevent the baker stretching it in one direction and
shrinking it in others, and then folding it back. So while the dough keeps much the
same overall shape, particles initially nearby within it can be dispersed to widely dif-
ferent parts of it, through the repeated stretching and folding. The same stretching
and folding operation can take place for stars in phase space. In fact it appears that
phase space is typically riddled with regions where f gets stretched in one direction
while being shrunk in others. Thus nearby orbits tend to diverge, and the divergence
is exponential in time.

Simulations show that the timescale for divergence (the e-folding time) is Tdiverge ∼
Tcross, the crossing time, and gets shorter for higher star densities.

However, in some special cases, there is no chaos. These systems are said to be
integrable.

If the dynamics is confined to one real-space dimension (hence two phase-space
dimensions) then no stretching-and-folding can happen, and orbits are regular. So in a
spherical system all orbits are regular. In addition, there are certain potentials (usually
referred to as Stäckel potentials) where the dynamics decouples into three effectively
one-dimensional systems; so if some equilibrium f generates a Stäckel potential, the
orbits will stay chaos-free. Also, small perturbations of non-chaotic systems tend
to produce only small regions of chaos,1 and orbits may be well described through

1If you ever come across the ‘KAM theorem’, that’s basically it.
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perturbation theory.

2.16.3 Integrals of the motion

To solve the collisionless Boltzmann equation for stars in a galaxy, we need further
constraints on the position and velocity. This can be done using integrals of the motion.
These are simply functions of the star’s position x and velocity v that are constant
along its orbit. They are useful in potentials Φ(x) that are constant over time. The
distribution function f is also constant along the orbit and can be written as a function
of integrals of the motion.

Examples of integrals of the motion are:

• The total energy. The mechanical energy E of a particular star in a potential is
constant over time, so E(x,v) = 1

2
mv2 +mΦ(x). Because this is dependent on

the mass of the star, it is more normal to work with the energy per unit mass,
which will be written as Em here. So Em = 1

2
v2 + Φ is a constant.

• In an axisymmetric potential (e.g. our Galaxy), the z-component of the angular
momentum, Lz, is conserved. Therefore Lz is an integral of the motion in such
a potential.

• In a spherical potential, the total angular momentum L is constant. Therefore
L is an integral of the motion in this potential, and the x, y and z components
of L are each integrals of the motion.

An orbit is said to be regular if it has as many isolating integrals that can define
the orbit unambiguously as there are spatial dimensions.

2.16.4 Isolating integrals and integrable systems

The collisionless Boltzmann equation tells us that df/dt = 0 (Section 2.14). As was
discussed earlier, if we move with a star in its orbit, f is constant locally as the star
passes through phase space at that instant in time. But if the system is in a steady
state (the potential is constant over time), f is constant along the star’s path at all

times. This means that the orbits of stars map out constant values of f .
An integral of the motion for a star (e.g. energy per unit mass, Em) is constant

(by definition). They therefore define a 5-dimensional hypersurface in 6-dimensional
phase space. The motion of a star is confined to that 5-dimensional surface in phase
space. Therefore f is constant over that hypersurface.

A different value of the isolating integral (e.g. a different value of Em) will define a
different hypersurface. In turn, f will be different on this surface. So f is a function
of the isolating integral, i.e. f(x, y, z, vx, vy, vz) = fn(I1) where I1 is an integral of the
motion. I1 here “isolates” a hypersurface. Therefore the integral of the motion is
known as an isolating integral.

Integrals that fail to confine orbits are called “non-isolating” integrals. A system
is integrable if we can define isolating integrals that enable the orbit to be determined.

In integrable systems there are significant simplifications. Each orbit is (i) confined
to a three-dimensional toroidal subspace of six-dimensional phase space, and (ii) fills
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its torus evenly.2 Phase space itself is filled by nested orbit-carrying tori—they have to
be nested, since orbits can’t cross in phase space. Therefore the time-average of each
orbit is completely specified once we have specified which torus it is on; this takes three
numbers for each orbit, and these are called ‘isolating integrals’ – they are constants
for each orbit of course. Think of the isolating integrals as a coordinate system that
parameterises orbital tori; transformations to a different set of isolating integrals is
like a coordinate transformation.

If isolating integrals exist, then any f that depends only on them will automatically
satisfy the collisionless Boltzmann equation. Conversely, since orbits fill their tori
evenly, any equilibrium f cannot depend on location on the tori, it can only depend
on the tori themselves, i.e., on the isolating integrals. This result is known as the
Jeans Theorem.

2.16.5 The Jeans Theorem

The Jeans Theorem is an important result in stellar dynamics that states the impor-
tance of integrals of the motion in solving the collisionless Boltzmann equation for
gravitational potentials that do not change with time. It was named after its discov-
erer, the English astronomer, physicist and mathematician Sir James Hopwood Jeans
(1877–1946). 3

It states that any steady-state solution of the collisionless Boltzmann equation
depends on the phase-space coordinates only through integrals of the motion in the
galaxy’s potential, and any function of the integrals yields a steady-state solution of
the collisionless Boltzmann equation.

This means that in a potential that does not change with time, we can express the
collisionless Boltzmann equation in terms of integrals of motion, and then solve for
the distribution function f in terms of those integrals of motion. We can then convert
the solution of f in terms of the integrals to a solution for f in terms of the space and
velocity coordinates. For example, if the energy per unit mass Em and total angular
momentum components Lx and Ly are constant for each star in some potential, then
we can solve for f uniquely as a function of Em, Lx and Ly. Then we can convert from
Em, Lx and Ly to give f as a function of (x, y, z, vx, vy, vz).

You should be wary of Jeans’ theorem, especially when people tacitly assume it,
because as we saw, it assumes that the system is integrable, which is in general not
the case.

2.17 Spherical Systems

2.17.1 Solving for f in spherical galaxies

The Jeans Theorem does apply in spherical systems of stars, such as spherical elliptical
galaxies. As a consequence, f can depend on (at most) three integrals of motion in
a spherical system. The simplest case is for f to be a function of the energy of the
stars only. (Since we are considering bound systems, f = 0 for E > 0 always: any

2These two statements are important results from Hamiltonian dynamical systems which we won’t
try to prove here. But the statements that follow in this section are straightforward consequences of
(i) and (ii).

3Much of this work was published by Jeans in the Monthly Notices R.A.S., 76, 70, 1915.
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stars that did have E > 0 will have escaped from the galaxy.) To find an equilibrium
solution, we only have to satisfy Poisson’s equation ∇2Φ = 4πGρ.

The total energy of a star of mass m moving with a velocity v is E = 1
2
mv2 +mΦ,

where Φ is the gravitational potential at the point where the star is situated. Here it
is more convenient to use the energy per unit mass Em = 1

2
v2 + Φ.

A spherical galaxy can be described very simply by a spherical polar coordinate
system (r, θ, φ) with the origin at the centre. Poisson’s equation relates the Laplacian
of the gravitational potential Φ at a point to the local mass density ρ as ∇2Φ = 4πGρ.
In a spherical polar coordinate system the Laplacian of any scalar function A(r, θ, φ)
is

∇2A ≡ 1

r2

∂

∂r

(

r2 ∂A

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂A

∂θ

)

+
1

r2 sin2 θ

∂2A

∂φ2
(2.63)

(a standard result from vector calculus: see Appendix C).
In a spherically symmetric galaxy that does not change with time, the potential is

a function of the radial distance r from the centre only. So ∂Φ/∂θ = 0 and ∂Φ/∂φ = 0.
Therefore,

∇2Φ =
1

r2

d

dr

(

r2 dΦ

dr

)

. (2.64)

Substituting this into the Poisson equation,

1

r2

d

dr

(

r2 dΦ

dr

)

= 4πGρ . (2.65)

The distribution function f is related to the number density n of stars by

n =

∫

f d3v

(from Equation 2.39), and in this case f is a function of energy per unit mass: f =
f(Em). We can relate this to the density ρ using ρ = m n where m is the mean mass
of a star, giving,

ρ = m

∫

f d3v . (2.66)

Note that here we are assuming that mass is in the form of stars only: there is no dark
matter here. This integral is over all velocities. We can convert from d3v to dv, where
v ≡ |v| by considering a thin spherical shell in a space defined by the three velocity
components, which gives d3v = 4πv2dv. So

ρ = 4π m

∫

fv2 dv . (2.67)

Note that this integration is over all velocities at a particular point in the galaxy. It
can be performed over velocity at each and every point in the galaxy, so this ρ is ρ(r).
(Here v is the magnitude of the velocity vector v, so v ≥ 0 always.)

We must determine the limits on this integral. For any particular point in the
galaxy (i.e. any value of r), the minimum possible velocity is v = 0, which occurs
when a star moving on a radial orbit reaches its maximum distance from the centre
at that point. The maximum velocity at this position occurs when a star has the
greatest possible energy (Em = 0, which would allow a star to move out from the
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point to arbitrary distance: any star with energy per unit mass Em > 0 will be
moving faster than the escape velocity for that location and will escape from the
galaxy). Therefore, using Em = 1

2
v2 + Φ(r), the maximum velocity (for Em = 0) is

v =
√

−2Φ(r) (remember that Φ(r) is negative, so that −2Φ(r) is positive). So the

integration at this point in space is from velocity v = 0 to
√

−2Φ(r). So,

1

r2

d

dr

(

r2 dΦ

dr

)

= (4π)2 Gm

∫

√
−2Φ(r)

0

f v2 dv . (2.68)

We can convert this integral over velocity to an integral over energy per unit mass.
Em = 1

2
v2 + Φ gives dEm = v dv at a fixed position (and hence for a constant Φ(r)).

The maximum possible energy per unit mass is 0 (because any stars with Em > 0 will
have escaped long ago), while the minimum possible value at a radius r would be given
by a star that is stationary at that point: Em = Φ(r) (which is of course negative).
So, at any radius r,

1

r2

d

dr

(

r2 dΦ

dr

)

= (4π)2
√

2 Gm

∫ 0

Φ(r)

√

Em − Φ(r) f(Em) dEm , (2.69)

on substituting v =
√

2(Em − Φ) .
It is usual in Equation 2.68 to take f(v) as given and to try to solve for Φ(r)

and hence ρ(r); this is a nonlinear differential equation. In Equation 2.69 we would
normally take Φ as given, and try to solve for f(Em); this is a linear integral equation.

There are f(Em) models in the literature, and you can always concoct a new one
by picking some ρ(r), computing Φ(r) and then solving Equation 2.69 numerically.
Note that the velocity distribution is isotropic for any f(Em). If f depends on other
integrals of motion, say angular momentum L or its z component, or both – thus
f(Em, L

2, Lz) – then the velocity distribution will be anisotropic, and there are many
examples of these around too.

2.17.2 Example of a spherical, isotropic distribution function:

the Plummer potential

As discussed earlier, the Plummer potential has a gravitational potential Φ and a mass
density ρ at a radial distance r from the centre that are given by

Φ(r) = − GMtot√
r2 + a2

, ρ(r) =
3Mtot

4π

a2

(r2 + a2)5/2
, (2.32) and (2.33)

where Mtot is the total mass of the galaxy and a is a constant. The distribution
function f for the Plummer model is related to the density ρ by Equation 2.67. It can
be shown that these Φ(r) and ρ(r) forms give a solution,

f(Em) =
24
√

2

7π3

a2

G5M4
tot m

(−Em)
7
2 . (2.70)

This can be verified by inserting in Equation 2.68, which can be done with some
mathematical work. This result gives the distribution function f as a function only of
the energy per unit mass Em. To calculate f for any point (x, y, z, vx, vy, vz) in phase
space, we need only to calculate Em from these coordinates and then calculate the
value of f associated with that Em.

47



2.17.3 Example of a spherical, isotropic distribution function:
the isothermal sphere

The isothermal sphere was introduced in Section 2.10.3. The density profile was
given in Equation 2.38. The isothermal sphere is defined by analogy with a Maxwell-
Boltzmann gas, and therefore the distribution function as a function of the energy per
unit mass Em is given by,

f(Em) =
n0

(2πσ2)
3
2

exp

(

− Em

σ2

)

=
n0

(2πσ2)
3
2

exp

(

−
1
2
v2 + Φ

σ2

)

, (2.71)

where σ is a velocity dispersion and acts in this distribution like a temperature does
in a gas. n0 is a constant. Integrating over velocities gives

n(r) =

∫

f d3v =

∫ ∞

0

f . 4π v2 dv =
4π n0

(2πσ2)
3
2

exp

(

− Φ

σ2

)
∫ ∞

0

v2 exp

(

− v2

2σ2

)

dv

=
4π n0

(2πσ2)
3
2

exp

(

− Φ

σ2

)

.

(

σ3

4

√
8π

)

= n0 exp

(

−Φ(r)

σ2

)

, (2.72)

using the standard integral
∫∞

0
x2e−ax2

dx =
√

π/a3 /4 . (Note that the isothermal
distribution includes stars with speeds from v = 0 to ∞, so our integration is from
zero to infinity in this case, instead of the 0 to

√
−2Φ used in the more realistic general

case in Equation 2.68. In practice, no stable galaxy will have stars with speeds larger
than

√

−2Φ(r) at a point a distance r from the centre because these stars would be
travelling faster than escape velocity.)
Converting this to density ρ(r) using ρ = mn, where m is the mean mass of the stars,
we get,

ρ(r) = ρ0 exp

(

−Φ(r)

σ2

)

, and equivalently, Φ(r) = − σ2 ln

(

ρ(r)

ρ0

)

, (2.73)

where ρ0 is a constant (with ρ0 ≡ n0m). Using this, Poisson’s equation (∇2Φ = 4πGρ)
in a spherically symmetric potential on substituting for dΦ/dr becomes,

1

r2

d

dr

(

r2 d

dr

(

− σ2 ln

(

ρ

ρ0

) ))

= 4πGρ ,

which simplifies to
d

dr

(

r2 d ln ρ

dr

)

= − 4πG

σ2
r2 ρ . (2.74)

This is a second-order differential equation in ρ and r. One solution to this is

ρ(r) =
σ2

2πGr2
, (2.38)

which is known as the singular isothermal sphere. As already commented in Sec-
tion 2.10.3, the isothermal sphere has infinite mass! (A side effect of this is that the
boundary condition Φ(∞) = 0 cannot be used, which is why we needed the redundant-
looking constant ρ0 in Equations 2.71 and 2.72.) Nevertheless, this isothermal sphere
density profile is often used as a model, with some large-r truncation assumed, for the
dark matter haloes of disc galaxies.

The same ρ(r) can be produced by many different f , all having different velocity
distributions.
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2.18 Observable and Measurable Quantities

The phase space distribution f is usually very difficult to measure observationally,
because of the challenges of measuring the distribution of stars over space and par-
ticularly over velocity. Velocity components along the line of sight can be measured
spectroscopically from a Doppler shift. However, transverse velocity components can-
not be measured directly for galaxies beyond our own (or at least beyond the Local
Group). As a function of seven variables (six of the phase space, plus time), the func-
tion f can be awkward to compute theoretically. It is therefore more convenient to
use quantities related to f .

The number density n of stars in space can be measured observationally by count-
ing more luminous stars for nearby galaxies, or from the observed intensity of light for
more distant galaxies. Star counts combined with estimates of the distances of indi-
vidual stars can provide n as a function of position within our Galaxy. For a distant
galaxy, converting the intensity along the line of sight of the integrated light from large
numbers of stars in to number densities – a process known as deprojection – requires
assumptions about the stellar populations and their three-dimensional distribution.
Nevertheless, reasonable attempts can be made in many cases.

Spectroscopy provides mean velocities 〈vl〉 along the line of sight through a galaxy,
and the widths of absorption lines provide velocity dispersions σl along the line of sight.
These mean velocities will be weighted according to the numbers of stars. In our own
Galaxy, it is usually possible to calculate the mean velocity and the dispersions of the
velocity about the mean value.

The velocity dispersion is an important concept. Observational data can provide
the velocity dispersion in perpendicular directions, at least within our own Galaxy. So
in our Galaxy, at each point in space, we might have the mean values of the velocity
components, 〈vR〉, 〈vφ〉 and 〈vz〉, in the R, φ and z directions, plus the dispersions
σR, σφ and σz, of the velocity components about their mean values, expressed as stan-
dard deviations. Velocity dispersions are often represented by the velocity dispersion

ellipsoid. This is an idealised representation of the dispersions as a three-dimensional
ellipsoid, where the distance from the origin in any particular direction is the size of
the velocity dispersion in that direction.

When working with galaxies other than our own, we sometimes consider isotropic

velocity distributions (particularly for elliptical galaxies). In this case, the velocity
dispersions in each direction are the same: σr = σθ = σφ, using a spherical coordinate
system (r, θ, φ) here. We may abbreviate these equal components simply as σ, and
these will be the same as the velocity dispersion σl along our line of sight. If the mean
velocities are zero, i.e. 〈vr〉 = 〈vθ〉 = 〈vφ〉 = 0 (as will be the case if the galaxy is in a
steady state and has no net rotation), then σ2 = 〈v2

r〉 = 〈v2
θ〉 = 〈v2

φ〉. The mean of the
square of the space velocity will be 〈v2〉 = 〈v2

r〉+ 〈v2
θ〉+ 〈v2

φ〉. Therefore, 〈v2〉 = 3σ2 in
a steady-state with no net rotation.

Although researchers often use the velocity dispersions in three perpendicular di-
rections (such as σR, σφ and σz), a full description of the dynamics of stars requires a
velocity dispersion tensor σij. This will discussed in detail later.

It is therefore much more convenient to calculate quantities involving number den-
sities n, mean velocities and velocity dispersions from f . These quantities can then
be compared with observations more directly. A series of equations called the Jeans
Equations allow this to be done.

49



2.19 The Jeans Equations

The Jeans Equations relate number densities, mean velocities, velocity dispersions
and the gravitational potential. They were first used in stellar dynamics by Sir James
Jeans in 1919.

It is useful to derive equations for the quantities

n =

∫

f d3v ,

n 〈vi〉 =

∫

vi f d3v ,

n σ 2
ij =

∫

(vi − 〈vi〉) (vj − 〈vj〉) f d3v , (2.75)

by taking moments of the collisionless Boltzmann equation (expressed in the Cartesian
variables xi and vi). σij is a velocity dispersion tensor: it is discussed in more detail
below.

The collisionless Boltzmann equation gives (Equation 2.46)

∂f

∂t
+

3
∑

i=1

(

dxi

dt

∂f

∂xi
+

dvi

dt

∂f

∂vi

)

= 0 ,

or equivalently,

∂f

∂t
+

3
∑

i=1

vi
∂f

∂xi
−

3
∑

i=1

∂Φ

∂xi

∂f

∂vi
= 0 ,

on substituting for the components of acceleration from dv/dt = −∇Φ.
To derive the first of the Jeans Equations, we shall consider the zeroth moment by

integrating this equation over all velocities.

∫

(

∂f

∂t
+

3
∑

i=1

vi
∂f

∂xi
−

3
∑

i=1

∂Φ

∂xi

∂f

∂vi

)

d3v =

∫

0 . d3v . (2.76)

∴

∫

∂f

∂t
d3v +

3
∑

i=1

∫

vi
∂f

∂xi

d3v −
3
∑

i=1

∂Φ

∂xi

∫

∂f

∂vi

d3v = 0

(with the right hand being zero because it is a definite integral). Some of these terms
can be simplified, particularly by noting the integration is performed over all velocities
at each position and time.
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But

∫

∂f

∂t
d3v =

∂

∂t

∫

f d3v because t and vi’s are independent

=
∂n

∂t
because n =

∫

f d3v,

and

∫

vi
∂f

∂xi
d3v =

∫

∂(vif)

∂xi
d3v because vi’s and xi’s are independent

=
∂

∂xi

∫

vi f d3v because xi’s and vi’s are independent

=
∂ (n 〈vi〉 )

∂xi
on substituting n〈vi〉 =

∫

vifd3v

and

∫

∂Φ

∂xi

∂f

∂vi

d3v =
∂Φ

∂xi

∫

∂f

∂vi

d3v because xi’s and Φ are independent
of vi’s

=
∂Φ

∂xi
(0) because f −→ 0 as |vi| −→ ∞ (by analogy

with the divergence theorem)

= 0 .

Substituting for these terms,

∂n

∂t
+

3
∑

i=1

∂n〈vi〉
∂xi

= 0 , (2.77)

which is a continuity equation. This is the first of the Jeans Equations.

To derive the second of the Jeans Equations, we consider the first moment of
the collisionless Boltzmann equation by multiplying by vi and integrating over all
velocities. Multiplying the C.B.E. throughout by vi, we obtain,

vi
∂f

∂t
+ vi

3
∑

j=1

vj
∂f

∂xj
− vi

3
∑

j=1

∂Φ

∂xj

∂f

∂vj
= 0 , (2.78)

where the summation is performed over an integer j because we have introduced a
velocity component vi. Note that the use of vi means that we are considering one
particular velocity component only at this stage, i.e. one value of i from i = 1, 3.
Integrating this over all velocities,

∫

(

vi
∂f

∂t
+

3
∑

j=1

vi vj
∂f

∂xj
−

3
∑

j=1

vi
∂Φ

∂xj

∂f

∂vj

)

d3v =

∫

0 . d3v . (2.79)

∴

∫

vi
∂f

∂t
d3v +

3
∑

j=1

∫

vi vj
∂f

∂xj
d3v −

3
∑

j=1

∫

vi
∂Φ

∂xj

∂f

∂vj
d3v = 0 .
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But

∫

vi
∂f

∂t
d3v =

∫

∂(vi f)

∂t
d3v because vi and t are independent

=
∂

∂t

∫

vi f d3v

=
∂

∂t
(n 〈vi〉) because n 〈vi〉 =

∫

vi f d3v,

and

∫

vi vj
∂f

∂xj

d3v =

∫

∂

∂xj

(vi vj f) d3v because vi and vj are indepen-
dent of xi

=
∂

∂xj

∫

vivjf d3v because xi and vi’s are indepen-
dent

=
∂ (n 〈vivj〉 )

∂xj

on substituting n〈vivj〉 =
∫

vivjf d3v

and

∫

vi
∂Φ

∂xj

∂f

∂vj
d3v =

∂Φ

∂xj

∫

vi
∂f

∂vj
d3v because xj’s and Φ are inde-

pendent of vi’s

But
∂(vif)

∂vj

= vi
∂f

∂vj

+ f
∂vi

∂vj

∴ vi
∂f

∂vj

=
∂(vif)

∂vj

− f
∂vi

∂vj

and
∂vi

∂vj

= 1 if i = j

= 0 if i 6= j because vi and vj are independent if i 6= j

∴
∂vi

∂vj

= δij

∴ vi
∂f

∂vj
=

∂(vif)

∂vj
− δij f .

So

∫

vi
∂Φ

∂xj

∂f

∂vj

d3v =
∂Φ

∂xj

∫
(

∂(vif)

∂vj

− δij f

)

d3v

=
∂Φ

∂xj

(
∫

∂(vif)

∂vj

d3v − δij

∫

f d3v

)

=
∂Φ

∂xj

(

0 − δij n
)

because vif −→ 0 as |vi| −→ ∞

= − ∂Φ

∂xj

δij n .

Substituting for these terms,

∂(n〈vi〉)
∂t

+
3
∑

j=1

∂

∂xj

(

n〈vivj〉
)

−
3
∑

j=1

(

− ∂Φ

∂xi

δij n

)

= 0 .

So,

∂(n〈vi〉)
∂t

+

3
∑

j=1

∂

∂xj

(

n〈vivj〉
)

= − ∂Φ

∂xi
n , (2.80)
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for each of i = 1, 2, 3. This is the second of the Jeans Equations.

We need to introduce a tensor velocity dispersion σij defined so that

n σ2
ij ≡

∫

(

vi − 〈vi〉
) (

vj − 〈vj〉
)

f d3v , (2.81)

for i, j = 1, 3 (see Equation 2.75 above). This is used to represent the spread of
velocities in each direction. It is a symmetric tensor and we can choose some coordinate
system in which it is diagonal (i.e. σ11 6= 0, σ22 6= 0, σ33 6= 0, but all the other
elements are zero). This is known as the velocity ellipsoid. For example, in a cylindrical
coordinate system, we might use elements such as σRR, σφφ and σzz. If the velocity
dispersion is isotropic, σ11 = σ22 = σ33, which we might simplify by writing as σ only.

Rearranging Equation 2.81 and multiplying out,

σ2
ij =

1

n

∫

(

vi − 〈vi〉
) (

vj − 〈vj〉
)

f d3v

=
1

n

∫

(

vivj − vi〈vj〉 − 〈vi〉vj + 〈vi〉 〈vj〉
)

f d3v

=
1

n

∫

vivj f d3v − 1

n

∫

vi 〈vj〉 f d3v − 1

n

∫

〈vi〉 vj f d3v

+
1

n

∫

〈vi〉 〈vj〉 f d3v

=
1

n

∫

vivj f d3v − 〈vj〉
1

n

∫

vi f d3v − 〈vi〉
1

n

∫

vj f d3v

+ 〈vi〉 〈vj〉
1

n

∫

f d3v because 〈vi〉 and 〈vj〉 are constants

= 〈vivj〉 − 〈vj〉 〈vi〉 − 〈vi〉 〈vj〉 + 〈vi〉 〈vj〉 from Equation 2.75.

So,

σ2
ij = 〈vivj〉 − 〈vi〉 〈vj〉 . (2.82)

This can be used to find 〈vivj〉 using

〈vivj〉 = σ2
ij + 〈vi〉 〈vj〉 .

Substituting for 〈vivj〉 into the second of the Jeans Equations (Equation 2.80),

∂(n〈vi〉)
∂t

+

3
∑

j=1

[

∂

∂xj

(

nσ2
ij

)

+
∂

∂xj

(

n〈vi〉〈vj〉
)

]

= − ∂Φ

∂xi
n ,

for each of i = 1, 2 and 3. Therefore,

〈vi〉
∂n

∂t
+ n

∂〈vi〉
∂t

+

3
∑

j=1

∂

∂xj

(

nσ2
ij

)

+

3
∑

j=1

∂

∂xj

(

n〈vi〉〈vj〉
)

= − ∂Φ

∂xi
n . (2.83)

We can eliminate the 1st and 4th terms using the first of the Jeans Equations (Equa-
tion 2.77). Multiplying that equation throughout by 〈vi〉,

〈vi〉
∂n

∂t
+ 〈vi〉

3
∑

j=1

∂

∂xj

(

n〈vj〉
)

= 0

∴ 〈vi〉
∂n

∂t
+

3
∑

j=1

〈vi〉
∂

∂xj

(

n〈vj〉
)

= 0 (2.84)
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But
∂

∂xj

(

n〈vi〉〈vj〉
)

= 〈vi〉
∂

∂xj

(

n〈vj〉
)

+ n 〈vj〉
∂〈vi〉
∂xj

Substituting for 〈vi〉
∂

∂xj

(

n〈vj〉
)

,

〈vi〉
∂n

∂t
+

3
∑

j=1

(

∂

∂xj

(

n〈vi〉〈vj〉
)

− n 〈vj〉
∂〈vi〉
∂xj

)

= 0

∴ 〈vi〉
∂n

∂t
+

3
∑

j=1

∂

∂xj

(

n〈vi〉〈vj〉
)

= n
3
∑

j=1

〈vj〉
∂〈vi〉
∂xj

.

Substituting this into Equation 2.83, we obtain,

n
∂〈vi〉
∂t

+ n

3
∑

j=1

〈vj〉
∂〈vi〉
∂xj

= − n
∂Φ

∂xi
−

3
∑

j=1

∂

∂xj

(

nσ2
ij

)

, (2.85)

where i can be any of 1, 2 or 3. This is a third Jeans Equation.
This can also be expressed as,

d〈v〉
dt

= − ∇Φ − 1

n
∇.(nσ2) , (2.86)

where 〈v〉 is the mean velocity vector, t is the time, Φ is the potential, n is the number
density of stars and σ2 represents the tensor σ2

ij. Note that here d/dt is not ∂/∂t, but

dv

dt

(

≡ Dv

Dt

)

=
∂v

∂t
+ v.∇v , (2.87)

which is sometimes called the convective derivative; it is also sometimes written as
D/Dt to emphasise that it is not simply ∂

∂t
.

This is similar to the Euler equation in fluid dynamics. An ordinary fluid has

d〈v〉
dt

= − ∇Φ − ∇P

ρ
+ viscous terms , (2.88)

where the pressure P arises because of the high rate of molecular encounters, which
also leads to the equation of state, and P is isotropic. In stellar dynamics, the stars
behave like a fluid in which ∇.(ρσ2) behaves like a pressure, but it is anisotropic.
Indeed, this anisotropy is the reason that it is represented by a tensor, whereas in an
ordinary fluid the pressure is represented by a scalar. A related fact is that in the flow
of an ordinary fluid the particle paths and streamlines coincide, whereas stellar orbits
and the streamlines 〈v〉 do not generally coincide.

The Jeans Equations have been represented here in terms of the number density
n of stars. However, it is possible to work instead with the mean mass density in
space ρ instead of n. The Jeans Equations can be used for all stars in a galaxy, but
sometimes they are used for subpopulations in our Galaxy (e.g. G dwarfs, K giants).
If they are used for subpopulations, Φ remains the total gravitational potential of all
matter (including dark matter), but the velocities and number densities refer to the
subpopulations.
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2.20 The Jeans Equations in an Axisymmetric Sys-

tem, e.g. the Galaxy

Using cylindrical coordinates (R, φ, z) and assuming axisymmetry (so ∂/∂φ = 0), the
second Jeans Equation is

∂

∂t

(

n〈vR〉
)

+
∂

∂R

(

n〈v2
R〉
)

+
∂

∂z

(

n〈vRvz〉
)

+
n

R

(

〈v2
R〉 − 〈v2

φ〉
)

= − n
∂Φ

∂R
for the R direction,

∂

∂t

(

n〈vφ〉
)

+
∂

∂R

(

n〈vRvφ〉
)

+
∂

∂z

(

n〈vφvz〉
)

+
2n

R
〈vRvφ〉 = 0

for the φ direction,

∂

∂t

(

n〈vz〉
)

+
∂

∂R

(

n〈vRvz〉
)

+
∂

∂z

(

n〈v2
z〉
)

+
n 〈vRvz〉

R
= − n

∂Φ

∂z
for the z direction. (2.89)

In a steady state, where the potential does not change with time, we can use
∂/∂t = 0. This axisymmetric form of the second Jeans Equation is useful in spiral
galaxies, such as our own Galaxy, provided that we neglect any change in the potential
in the φ direction (although there might be a φ dependence if the potential is deeper
in the spiral arms).

Meanwhile, the first of the Jeans Equations in a cylindrical coordinate system with
axisymmetric symmetry (∂/∂φ = 0) is,

∂n

∂t
+

1

R

∂

∂R

(

Rn〈vR〉
)

+
∂

∂z

(

n〈vz〉
)

= 0 . (2.90)

2.21 The Jeans Equations in a Spherically Sym-

metric System

The second Jeans Equation in a steady-state (∂/∂t = 0) spherically-symmetric (∂/∂φ =
0, ∂/∂θ = 0) galaxy in a spherical polar coordinate system (r, θ, φ) is

d

dr

(

n 〈v2
r〉
)

+
n

r

[

2〈v2
r〉 − 〈v2

θ〉 − 〈v2
φ〉
]

= − n
dΦ

dr
. (2.91)

This might be used, for example, for a spherical elliptical galaxy.
(This equation will just be stated here: it will not be derived. It can be derived

from the collisionless Boltzmann equation expressed in spherical coordinates using
similar methods to the Cartesian Jeans equations discussed above.)

We can calculate the gradient in the potential in this spherical case very simply.
Using the general result that the acceleration due to gravity is g = −∇Φ, that g =
GM(r)/r2 in a spherically symmetric system where M(r) is the mass interior to the
radius r, and that ∇Φ = dΦ/dr in a spherical system, we get dΦ/dr = GM(r)/r2.

As a simple test to see whether this really does work, let us make a crude model
of our Galaxy’s stellar halo. We shall assume that the halo is spherical, assume a
logarithmic potential of the form Φ(r) = v2

0 ln r where v0 is a constant, assume that
the velocity components are isotropic (i.e. 〈v2

r〉 = 〈v2
θ〉 = 〈v2

φ〉 = σ2, where σ is a
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constant), and assume that the star number density of the halo can be approximated
by n(r) ∝ r−l where l is a constant. Equation 2.91 now becomes

d

dr

(

n σ2
)

+
n

r
(0) = − n

dΦ

dr
, ∴ σ2 dn

dr
= −n

dΦ

dr
,

on substituting for the velocity terms. Using Φ = v2
0 ln r and n(r) = kr−l (where k is

a constant) we get dΦ/dr = v2
0/r and dn/dr = −lkr−l−1. Substituting for these and

cancelling r, we obtain σ = v0/
√
l. For the Milky Way’s halo, observations show that

n ∝ r−3.5 (i.e. l = 3.5), while v0 as measured from gas on circular orbits is 220 km s−1,
and rotation is negligible (which is a requirement for v2

θ = σ2 etc.). So we expect
σ ' 220 km s−1/

√
3.5 ' 120 km s−1. And it is.

2.22 Example of the Use of the Jeans Equations:

the Surface Mass Density of the Galactic Disc

The Jeans Equations can be applied to our Galaxy to measure the surface mass density
of the Galactic disc at the solar distance from the centre using observations of the
velocities of stars along the line of sight lying some distance above or below the Galactic
plane. The surface mass density is the mass per unit area of the disc when viewed
from from a great distance. It is expressed in units of kg m−2, or more commonly solar
masses per square parsec (M�pc−2). This analysis is important because it allows the
quantity of dark matter in the disc to be estimated. Determining whether there is
dark matter in the Galactic disc is a very important constraint on the nature of dark
matter.
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The second Jeans Equation in a cylindrical coordinate system (R, φ, z) centred on the
Galaxy, with z = 0 in the plane and R = 0 at the Galactic Centre states for the z
direction that

∂(n〈vz〉 )

∂t
+

∂(n〈vRvz〉 )

∂R
+

∂(n〈v2
z〉 )

∂z
+

n〈vRvz〉
R

= − n
∂Φ

∂z

(Equation 2.89), where n is the star number density, vR and vz are the velocity compo-
nents in the R and z directions, Φ(R, z, t) is the Galactic gravitational potential and
t is time.
The Galaxy is in a steady state, so n does not change with time. Therefore the first
term ∂(n〈vz〉)/∂t = 0.
Observations show that

∂(n〈vRvz〉 )

∂R
' 0 and

n〈vRvz〉
R

' 0 ,

as is to be expected because of the cancelling of positive and negative terms of the
z-components of the velocity. Therefore,

∂(n〈v2
z〉 )

∂z
= − n

∂Φ

∂z
. (2.92)

〈v2
z〉 is the mean square velocity in the direction perpendicular to the Galactic plane.

Poisson’s equation gives ∇2Φ = 4πGρ, where ρ is the mass density at a point. In
cylindrical coordinates the Laplacian is

∇2Φ =
1

R

∂

∂R

(

R
∂Φ

∂R

)

+
1

R2

∂2Φ

∂φ2
+

∂2Φ

∂z2

(from Appendix C).
If we observe stars directly above and below the Galactic plane, all at the same Galac-
tocentric radius R, we can neglect the ∂Φ/∂R and ∂2Φ/∂φ2 terms.

∴
∂2Φ

∂z2
= 4πGρ ,
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and substituting for ∂Φ/∂z from Equation 2.92 into this,

∂

∂z

(

− 1

n

∂

∂z

(

n〈v2
z〉
)

)

= 4πGρ .

Integrating perpendicular to the Galactic plane from −z to z, the surface mass density
within a distance z of the plane at a Galactocentric radius R is

Σ(R, z) =

∫ z

−z

ρ dz′ =

∫ z

−z

1

4πG

∂

∂z

(

− 1

n

∂

∂z

(

n〈v2
z〉
)

)

dz′

= − 1

4πG

[

1

n

∂

∂z

(

n〈v2
z〉
)

]z

z′=−z

= − 1

2πGn

∂

∂z

(

n〈v2
z〉
)

∣

∣

∣

∣

∣

z

,

assuming symmetry about z = 0. Therefore the surface mass density within a distance
z of the plane at the solar Galactocentric radius R0 is

Σ(R0, z) = − 1

2πGn

∂

∂z

(

n〈v2
z〉
)

∣

∣

∣

∣

∣

z

. (2.93)

If the star densities n can be measured as a function of height z from the plane and if
the z-component of the velocities vz can be measured as spectroscopic radial velocities,
we can solve for Σ(R0, z) as a function of z. This gives, after modelling the contribution
from the dark matter halo, the mass density of the Galactic disc.

The analysis can be performed on some subclass of stars, such as G giants or K
giants. In this case the number density n of stars in space is that of the subclass.
Number counts of stars towards the Galactic poles, combined with estimates of the
distances to individual stars, give n. Spectroscopic observations give radial velocities
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(the velocity components along the line of sight) through the Doppler effect. By
observing towards the Galactic poles, the radial velocities are the same as the vz

components.
This analysis gives Σ(R0, z) as a function of z. The value increases with z as

a greater proportion of the stars of the disc are included, until all the disc matter is
included. Σ(R0, z) will still increase slowly with z beyond this as an increasing amount
mass from the dark matter halo is included. Indeed, it is necessary to determine
the contribution Σd(R0) from the disc alone to the observed data. An additional
complication is that in measuring ∂(n〈v2

z〉)/∂z as a function of z, we are dealing with
the differential of observed quantities. This means that the effects of observational
errors can be considerable.

The first measurement of the surface density of the Galactic disc was carried out
by Oort in 1932. More modern attempts were carried out in the 1980s by Bahcall and
by Kuijken and Gilmore. There has been considerable debate about the interpretation
of results. Early studies claimed evidence of dark matter in the Galactic disc, but
more recently some consensus has developed that there is little dark matter in the disc
itself, apart from the contribution from the dark matter halo that extends into the
disc. A modern value is Σd(R0) = 50 ± 10 M� pc−2. The absence of significant dark
matter in the disc indicates that dark matter does not follow baryonic matter closely
on a small scale, a very important result.

2.23 N-body Simulations

An alternative approach that can be adopted to study the dynamics of stars in galaxies
is to use N -body simulations. In these analyses, the system of stars is represented by
a large number of particles and computer modelling is used to trace the dynamics of
these particles under their mutual gravitational attractions. These simulations usually
determine the positions of the test particles at each of a series of time steps, calculating
the changes in their positions between each step. It is possible to add further particles
to trace gas and dark matter, although the gas must be made collisional.

The individual particles in a galaxy simulation, however, do not correspond to
stars. It is impossible to represent every star in a galaxy in N -body simulations. In
practice, the limits on computational power allow only ∼ 105 to 108 particles, whereas
there may be as many as 1012 stars in the galaxies being modelled. The appropriate
interpretation of simulation particles is as Monte-Carlo samplers of the distribution
function f .

In Section 2.6 we found that the ratio of the relaxation time to the crossing time
was Trelax/Tcross ∼ N/12 lnN for a system of N particles. It follows that a system that
is modelled computationally by too few particles will have a relaxation time that is
too short, and may experience the effects of two-body encounters. As a consequence,
the particles in N -body simulations have to be made collisionless artificially. The
standard way of doing this is to replace the 1/r gravitational potential of each particle

by (r2 +a2)−
1
2 , which amounts to smearing out the mass on the ‘softening length’ scale

a.
Early N -body computer codes performed calculations for each time step that took

a time that depended on the number N of particles as N 2. Modern codes perform
faster computations by treating distant particles differently to nearby particles. “Tree
codes” combine the effects of number of distant particles together. This increases their
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efficiency and the computation times scale as only N lnN .
N -body simulations are widely used now to study the evolution of galaxies, and an

active research area at present is to incorporate gas dynamics in them. In contrast to
standard N -body methods, smoothed particle hydrodynamics (SPH) are often used
to study the gas in galaxies. Modern simulations include the effects of dark matter
alongside stars and gas. They can follow the collapse of clumps of dark matter in
the early Universe that led to the formation of galaxies. Simulations can also follow
the growth of structure in the Universe as gravitational attraction produced the clus-
tering of galaxies observed today. N -body simulations can model the effects of large
changes in gravitational potentials, whereas analytical methods can find these more
challenging.
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