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Abstract

A linear [Fe/H]-[O/H] relation is found for different stellar popu-
lations in the Galaxy (halo, thick disk, thin disk) from a data sample
obtained in a recent investigation (Ramı́rez et al. 2013). These cor-
relations support previous results inferred from poorer samples: stars
display a “main sequence” expressed as [Fe/H] = a[O/H] + b ∓ ∆b
where a unit slope, a = 1, implies a constant [O/Fe] abundance ra-
tio. Oxygen and iron empirical abundance distributions are then de-
termined for different subsamples, which are well explained by the
theoretical predictions of multistage closed-(box+reservoir) (MCBR)
chemical evolution models by taking into account the found correla-
tions. The interpretation of these distributions in the framework of
MCBR models gives us clues about inflow/outflow rates in these differ-
ent Galactic regions and their corresponding evolution. Outflow rate
for the thick and the thin disks are lower than the halo outflow rate.
Moreover if the thin disk built up from the thick disk, both systems
result of comparable masses. Besides that, the iron-to-oxygen yield
ratio and the primary to not primary contribution ratio for the iron
production are obtained from the data, resulting consistent with SNII
progenitor nucleosynthesis and with the iron production from SNIa
supernova events.
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1 Introduction

Simple models of chemical evolution rely on some basic assumptions, namely
(1) universal stellar initial mass function (IMF), which implies identical star
generations both in space and in time, regardless of composition; (2) instan-
taneous recycling, which implies short-lived stars instantaneously die and
long-lived stars exist forever; (3) instantaneous mixing, which implies gas re-
turned from dying stars and gas inflowing from outside are instantaneously
and uniformly mixed with the pre-existing gas; (4) universal nucleosynthesis
for assigned stellar mass, which implies nuclide production is independent
of the initial composition. For further details and application to the solar
neighbourhood, an interested reader is addressed to earlier investigations on
disk (e.g., Pagel and Patchett 1975) and halo (e.g., Ryan and Norris 1991)
stars.

In reality, the above mentioned assumptions are valid only to a first ex-
tent. More specifically, (1) leaving aside pop III stars, a top-heavy IMF seems
to be triggered by tidal interactions due to merger or accretion events (e.g.,
Rieke et al. 1980; Doane and Mathews 1993; Lopez-Sanchez 2010) while, on
the other hand, the IMF lower end depends on the temperature, pressure and
composition of gas turned into a star generation (e.g., Conroy et al. 2013;
Bekki 2013); (2) gas recycling after star death is delayed for long-lived stars
such as type Ia supernova (SNIa) progenitors (e.g., Haywood 2001); (3) gas
returned after star death or inflowing from outside is uniformly mixed with
the interstellar medium after a finite time, or restricted into cells with little
interaction with the surroundings (e.g., Wilmes and Köppen 1995; Wiersma
et al. 2009); (4) stellar nucleosynthesis depends on the initial composition, in
addition to the initial mass, for a class of nuclides called secondary elements,
in contrast with primary elements for which the dependence on the initial
composition may be neglected to a first extent (e.g., Pagel and Tautvaisiene
1995). In particular, it holds for oxygen and iron created in massive stars
or SNII events (e.g., Yates et al. 2013). Stellar lifetime also depends on
the initial metal abundance, but the trend changes only slightly and can be
neglected to a first extent (e.g., Yates et al. 2013).

Accordingly, simple models of chemical evolution can be used as a zeroth
order approximation and comparison with results from more refined models
could be useful. Let nuclides produced under the validity of assumptions
(1)-(4) above be defined as simple primary (sp) elements (Caimmi 2013a,
hereafter quoted as C13a) and nuclides produced otherwise be defined as non
simple primary (np) elements. Let processes yielding sp and np elements be
defined as sp and np processes, respectively.

In this scenario, predictions may be compared with observations from a
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selected star sample and discrepancies could provide valuable informations
on the history of the parent population. In particular, predicted relative mass
abundances maintain constant, ZQ1

/ZQ2
= const, or ZQ/Z = const, where

Q1, Q2, Q, are selected elements heavier than He, or metals, and Z =
∑

ZQi

where all metals are included.
In terms of number abundances normalized to solar values, according

to the standard spectroscopic notation1, the above relation translates into
[Q1/H] = [Q2/H]+bQ1

, where bQ1
depends on ZQ1

/ZQ2
and its solar counter-

part (e.g., C13a). That is a relation which can be inferred from sample stars
where both [Q1/H] and [Q2/H] are known.

To this aim, oxygen appears as a natural choice of sp element. In fact, it is
mainly synthesized within type II supernova (SNII) progenitors, which makes
the above assumptions (1)-(4) hold to an acceptable extent. Accordingly,
[Q/H] = [O/H]+bQ provided Q is also sp element, which is a straight line
of unit slope and intercept, bQ, on the {O[O/H][Q/H]} plane. On the other
hand, an empirical [Q/H]-[O/H] relation may be obtained for any element (sp
or np), when the number of objects is high enough, and then compared with
theoretical predictions to determine the contribution of sp and np processes
to the mass abundance, ZQsp

and ZQnp
.

Classical simple models are closed-box (CB), allowing neither gas inflow
nor gas outflow, which implies total (gas+star) mass remains unchanged
(e.g., Pagel and Patchett 1975). The addition of a reservoir to the box
opens the possibility of both gas inflow (from the reservoir to the box) and
gas outflow (from the box to the reservoir), while the total mass remains
unchanged provided the reservoir is included in the balance. In other words,
the model may be conceived as “closed” with regard to the box+reservoir
and “open” with regard to the box alone, or shortly closed-(box+reservoir)
(CBR). For further details, an interested reader is addressed to the parent
papers (Caimmi 2011a, 2012a). The first example of CBR model is shown
in a classical paper where the predicted chemical evolution of the halo fits
to the data (Hartwick 1976). Thought the box and the reservoir are not
explicitly mentioned therein, gas inhibited from star formation may safely
be conceived as outflowing from the box (the halo therein) to the reservoir
(the disk therein).

In general, CBR models maintain the standard assumptions mentioned
above for CB models, with the addition of (i) mass conservation within the
box+reservoir; (ii) gas outflow from the box into the reservoir or gas inflow
into the box from the reservoir (1) at a rate proportional to the star formation

1In general, [Q1/Q2] = log(NQ1
/NQ2

) − log(NQ1
/NQ2

)⊙, where NQ is the number
density of the element, Q.
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rate, and (2) with composition proportional to its conterpart within the box;
(iii) absence of star formation within the reservoir.

Mass conservation within the box+reservoir can be expressed as (e.g.,
Caimmi 2011a):

(1 + κ)
ds

dt
= − dµ

dt
; (1)

where κ is the flow parameter (ratio of inflowing or outflowing gas rate to
locking up gas rate into long-lived stars and remnants), s and µ are long-lived
star and gas mass fraction. More specifically, with respect to CB models,
Eq. (1) discloses different flow regimes as: outflow regime (κ > 0), where less
gas is available for star formation (Hartwick 1976); stagnation regime (κ = 0),
where CBR models reduce to CB models (Searle 1972; Searle and Sargent
1972); moderate inflow regime (−1 < κ < 0), where a slightly larger amount
of gas is available for star formation and the gas mass fraction monotonically
decreases in time (Caimmi 2007); steady inflow regime (κ = −1), where a
larger amount of gas is available for star formation and the gas mass fraction
remains unchanged in time (Caimmi 2011a, 2012a); strong inflow regime (κ <
−1) where a substantially larger amount of gas is available for star formation
and the gas mass fraction monotonically increases in time (Caimmi, 2011a,
2012a).

A main feature of CBR (and a fortiori CB) models is that the theoretical
differential abundance distribution (TDAD), ψQ = log[ dN/(N dφQ)], as a
function of the normalized abundance, φQ = ZQ/(ZQ)⊙, is close to a straight
line for the cases of interest, ψQ = αQφQ + βQ, where Q is a selected pri-
mary element synthesised within SNII progenitors and N the total number
of long-lived stars (Pagel 1989; Malinie et al. 1993; Rocha-Pinto and Maciel
1996; Caimmi 2011a, 2012a, and earlier references therein). The normalized
abundance, in turn, may be expressed to an acceptable extent as (e.g., Pagel
and Patchett 1975; Hartwick 1979):

φQ = − 1

1 + κ

p̂Q
(ZQ)⊙

lnµ ; (2)

where p̂Q/(1 + κ) is the effective yield. Accordingly, a linear (or nearly
linear) fit to the empirical differential abundance distribution (EDAD) allows
comparison between observations from stellar populations and predictions of
CBR models. More specifically, oxygen EDAD can be fitted by a broken
line with several segments, where each segment can be interpreted within
the framework of CBR models. A change in the slope implies a transition
between adjacent evolutionary stages.

In other words, oxygen EDAD can be reproduced via a chain of CBR
models where the flow rate is discontinuous in each transition, or shortly mul-
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tistage closed-(box+reservoir) (MCBR) models. In particular, early stages
appear to undergo strong inflow regime, middle stages approach steady in-
flow regime, and late stages exhibit low inflow or outflow regime (Caimmi
2011a, 2012a). The special case of steady inflow regime, where the inflowing
gas balances the amount of pre-existing gas turned into stars, finds a counter-
part in the results of hydrodynamical simulations, where quasi equilibrium
is attained between inflowing gas, outflowing gas, gas turned into stars (e.g.,
Finlator and Davé 2008; Davé et al. 2011a,b, 2012).

The main features of MCBR models (Caimmi 2011a, 2012a, 2013b, the
last quoted henceforth as C13b), for any assigned sp element, Q, may be
summarized as follows.

• Simple MCBR models predict a linear TDAD, ψQ = αQφQ + βQ.

• The slope, αQ, and the intercept, βQ, of this TDAD depend on the effective
yield, p̂Q/(1 + κ), on the initial abundance, (φQ)i, and on the initial
and final gas mass fraction, µi and µf .

• The TDAD slope relates to the flow regime as follows. The steady state
inflow regime (κ = −1) implies null slope (α = 0). The strong inflow
regime (κ < −1) implies positive slope (α > 0). The weak inflow
regime (−1 < κ < 0), the stagnation regime (κ = 0), and the outflow
regime (κ > 0) imply negative slope (α < 0).

• The abundance ratio between two sp elements remains fixed during the
evolution and equals the yield ratio which, in turn, is inversely propor-
tional to the TDAD slope ratio, p̂Q1

/p̂Q2
= [(ZQ1

)⊙/(ZQ2
)⊙](αQ2

/αQ1
).

• For two different populations, P1, P2, the TDAD slope ratio relates to the
flow regime, as (αQ)P1

/(αQ)P2
= (1 + κP1

)/(1 + κP2
).

• Any choice of input parameters (initial gas mass fraction, µi; initial star
mass fraction, si; initial inflowed/outflowed gas mass fraction, Di; ini-
tial and final element abundance normalized to the solar value, (φQ)i,
(φQ)f ; TDAD slope and intercept, αQ, βQ; IMF, Φ(m); true yield,
p̂Q) produce the output parameters (flow parameter, κ; final gas mass
fraction, µf ; final star mass fraction, sf ; final inflowed/outflowed gas
mass fraction, Df ) which can be taken as input parameters for the
subsequent stage of evolution.

To this respect, MCBR models make a further step with respect to stan-
dard simple models, where a single stage is considered, in that a sequence of
evolutionary stages is described, where the inflow/outflow rate and related
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parameters change passing from a previous stage to a subsequent one. In this
context, the predicted TDAD must necessarily relate to sp elements, oxygen
in particular.

On the other hand, the EDAD is usually inferred from iron, which is
easier to be detected in stellar atmospheres. But iron cannot be considered
as instantaneously recycled (i.e. sp element) in that a substantial fraction is

produced via SNIa events, whose progenitors are low-mass stars (m
<∼ 8m⊙)

belonging to binary systems where the members are sufficiently close.
Then in absence of oxygen abundance data inferred from observations,

an empirical [Fe/H]-[O/H] relation (e.g., Carretta et al. 2000; Israelian et
al. 2001) has necessarily to be used for determining oxygen EDAD from a
selected star sample.

In earlier papers, a linear fit to the empirical [Fe/H]-[O/H] relation has
been aimed to different extents: (a) to infer oxygen EDAD from iron EDAD
in absence of rich samples where oxygen abundance is known, such as halo
stars (Caimmi 2011a); (b) to provide a rigorous star classification within
globular clusters and other halo and disk populations (C13a). An additional
result, restricted to iron fraction synthesised within SNII progenitors, is that
the iron-to-oxygen yield ratio can be independently expressed via either a
linear [Fe/H]-[O/H] relation with a unit slope regardless of iron and oxygen
TDAD, or a linear iron and oxygen TDAD regardless of [Fe/H]-[O/H] relation
(C13b).

According to the above considerations, with regard to a selected element,
Q, and to an assigned star sample, both the inferred empirical [Q/H]-[O/H]
relation and the EDAD for Q and O provide valuable clues for understanding
the evolution of the parent population. In most cases, Q = Fe, as iron can
easily be detected.

The current paper deals with a sample including halo, thick disk and thin
disk nearby stars, for which both oxygen and iron abundances have been well
determined (Ramı́rez et al. 2013, hereafter quoted as Ra13) as extension of
a previous investigation (Ramı́rez et al. 2007). More specifically, rich sub-
samples are available with accurate abundance values for disk populations,
with the addition of a poor incomplete halo sample (Ramı́rez et al. 2012).

By using this much better sample of stars with available data for oxygen
and iron, we would like to check our previous finding and conclusions doing
what follows:

(i) completely studying O-Fe correlations,

(ii) determining oxygen and iron EDAD,
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(iii) performing linear fits to oxygen and iron EDAD above and comparing
with related TDAD in the framework of MCBR models,

(iv) checking that the iron EDAD obtained from oxygen EDAD and [Fe/H]-
[O/H] relation reproduces the actually measured iron EDAD,

(v) determining sp and np iron contributions from [Fe/H]-[O/H] relation,

(vi) estimating the ratio between yields for iron and oxygen,

(vii) analysing the above results in the framework of MCBR models to es-
timate the outflow and inflow rates.

(viii) obtaining the thick disk evolution and comparing these results with
other conclusions inferred from age and star formation rates (Haywood
et al. 2013; Snaith et al. 2014).

Basic informations on the data together with regression line analysis are
provided in Section 2, where the original sample is subsampled according to
star population and star class. The inferred EDAD for oxygen and iron are
shown in Section 3. The results are discussed in Section 4. The conclusion
is drawn in Section 5.

2 Data and regression line analysis

The data are taken from a sample (N = 825) of solar neighbourhood FGK-
type dwarf stars in the metallicity range, −2.6 < [Fe/H] < 0.5, for which
[O/H] has been determined using high-quality spectra and a non-LTE anal-
ysis of the 777 nm OI triplet lines, while a standard spectroscopic approach
has been followed for the evaluation of [Fe/H], where values of FeII have been
taken as representative. For further details, an interested reader is addressed
to Ra13 and earlier researches (Ramı́rez et al. 2007, 2012).

Subsamples can be extracted from the parent sample (HD) according to
different populations and different classes: a star of the sample belongs to
halo (HH), thick disk (KD), or thin disk (ND), if PXY > 0.5, where XY
= HH, KD, ND, and P is a probability inferred from kinematics, or it is
uncertain between thick and thin disk (KN), when PKD ≤ 0.5, PND ≤ 0.5,
PHH ≪ min(PKD, PND), respectively. It is worth noticing the above men-
tioned uncertainty criterion, which prevents a disk star from being assigned
to the thick or thin subsystem, is more restrictive with respect to what as-
sumed in Ra13.
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Table 1: Number of stars in the subamples from the original sample for dif-
ferent populations (pop) as: ND - thin disk; KD - thick disk; KN - uncertain
if belonging to thin or thick disk; HH - halo; HD - original sample (HD =
ND + KD + KN + HH); and class (cl) as: n - normal dwarfs; c - cool
high-metallicity dwarfs; g - giants; o - outliers; t - total (t = n + c + g + o).

pop: ND KD KN HH HD
cl
n 513 215 6 41 775
c 10 1 0 0 11
g 14 18 0 3 35
o 1 3 0 0 4
t 538 237 6 44 825

According to Ra13, sample stars are classified as cool high-metallicity
dwarfs (Teff < 5100K; log g > 4.4; [Fe/H]> −0.1), giants (Teff < 5500K;
log g < 4.0), outliers (relative to the main disk [O/Fe] vs. [Fe/H] trend),
which shall be denoted throughout the text as c, g, o, respectively. The
remaining stars are classified here as “normal” dwarfs and denoted as n.

The number of stars belonging to different subsamples, as given in Ra13,
are listed in Table 1. Subsamples related to a stellar population and a selected
class shall be denoted as XYz, where XY defines the population, as shown
below with the addition of XY = KN, HD, and z defines the star class, z =
n, c, g, o. Though halo subsamples are largely incomplete, still they shall be
considered for inference of preliminary results and comparison with related
disk counterparts.

The empirical [Fe/H]-[O/H] relation is plotted in Fig. 1 for the parent
sample, HD, where different star classes are denoted by different symbols, as
squares (NDn), saltires (KDn), diagonalized squares (KNn), crosses (HHn),
triangles (HDc), diamonds (HDg), “at” (HDo).

Also shown are three selected “main sequences”, expressed as:

[Fe/H] = [O/H]− 0.45∓ 0.25 ; (3)

(dotted), already shown in earlier researches (Caimmi 2012a; C13a);

2[Fe/H] = 3[O/H]− 0.25∓ 0.75 ; (4)

(dashed), inferred from Ra13;

3[Fe/H] = 4[O/H]− 0.40∓ 0.80 ; (5)
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Table 2: HIP number, oxygen and iron abundance, related uncertainty (∆Q =
∆[Q/H], Q = O, Fe), population and class (XYz), for stars lying outside
(including the errors) the main sequences with slope equal to 4/3 and 3/2,
respectively, plotted in Fig. 1. For further details refer to the text.

HIP [O/H] ∆O [Fe/H] ∆Fe XYz
069972 +0.55 0.12 +0.16 0.13 NDc
060719 −0.78 0.32 −2.44 0.13 KDg
049988 −0.53 0.26 −0.81 0.05 KDo
012294 −0.88 0.01 −0.77 0.22 HHn
068594 −3.83 1.48 −2.56 0.06 HHg
114962 −1.15 0.02 −1.24 0.23 HHn

(full), inferred from Fig. 1.
Keeping in mind typical errors are of the order of symbol dimensions on

the scale of the plot, an inspection of Fig. 1 shows a substantial fraction of
sample stars lie outside the main sequence of slope equal to 1. Accordingly,
iron cannot be considered as a simple primary element, contrary to oxygen,
mainly due to delayed recycling via SNIa events.

On the other hand, only a few stars lie outside the main sequences with
slope equal to 4/3 and 3/2, respectively, whose abundances and related un-
certainties are listed in Table 2. It includes stars from different populations
and classes: NDc (1), KDg (1), KDo (1), HHn (2), HHg (1), for a total of 6.
In this view, the stars under discussion should be considered as outliers.

In addition, the HHg star lies outside the scale of related plots and cannot
be represented even in the parent paper (Ra13). If inferred oxygen abundance
is unbiased, the above mentioned star could be a globular cluster outlier of
second or later generation, which implies sodium overabundance (Ramı́rez et
al. 2012).

The empirical [Fe/H]-[O/H] relation is plotted in Fig. 2 for ND, KD, HH
subsamples and the parent sample, HD, the last repeated for better compar-
ison. Within the current framework, all stars belonging to HH, KD, ND, DD
= KD + ND + KN subsamples could be used to infer both the [Fe/H]-[O/H]
empirical relation and the EDAD for O and Fe. On the other hand, the em-
pirical [O/Fe]-[Fe/H] relation is inferred in Ra13 using stars of class n only,
which are the main part of sample stars as shown in Table 1. Accordingly,
to be consistent with the results of Ra13, further analysis shall be restricted
to stars of class n and, to save space, subsamples HHn, KDn, NDn, DDn,
HDn, shall hereafter be denoted as HH, KD, ND, DD, HD, respectively.
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Table 3: Regression line slope and intercept estimators, â and b̂, and re-
lated dispersion estimators, σ̂â, and σ̂b̂, for different subsamples (sub) . The
number (N) of stars within each subsample is also listed.

â σ̂â −b̂ σ̂b̂ sub N

1.1743D+00 4.7182D−02 2.2727D−01 3.6619D−02 HH 041
1.6015D+00 4.4402D−02 1.6873D−01 9.0781D−03 KD 215
1.3658D+00 2.9746D−02 7.0718D−02 5.1026D−03 ND 513
1.5942D+00 4.8154D−02 9.5685D−02 7.8672D−03 DD 734
1.4378D+00 5.0321D−02 1.0174D−01 7.9502D−03 HD 775

At this stage, two considerations can be performed. First, the sample
consists of nearby stars, which implies that our conclusions rely on the as-
sumption that the solar neighbourhood is a typical region of the related sub-
system (ND, KD, HH). Second, although a bilinear regression with a knee
has been widely used for fitting the [O/Fe]-[Fe/H] empirical relation (e.g.,
Ra13), we prefer a single linear regression. The dichotomy between bilinear
(e.g., Carretta et al. 2000; Gratton et al. 2000) and linear (e.g., Israelian
et al. 2001; Takada-Hidei et al. 2001) trend is long-dating, but the last
alternative is preferred here, as in previous works (Caimmi 2012a; C13a), for
reasons of simplicity.

In summary, number abundances plotted in Fig. 2 show a linear trend as:
[Fe/H] = a[O/H]+b for HH, KD, ND, DD, HD populations. The regression
line has been determined for each subsample using standard methods (e.g.,
Isobe et al. 1990; Caimmi 2011b, 2012b) and the results are listed in Table
3 and plotted in Fig. 3. From these results, it is evident that:

(1) The regression line slope estimators, â, are not consistent2 within ∓3σ̂â,
for HH, KD, ND populations and the same holds for DD, HD popula-
tions.

(2) The regression line slope estimators are not consistent with the unit
slope, within ∓3σ̂â, regardless of the population.

(3) The regression line intercept estimators, b̂, are not consistent within

2 The term “consistent” has to be intended in mathematical (instead of statistical)
sense, as a null intersection between intervals, x̂ ∓ σ̂x̂, related to different populations,
where x is a random variable.
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∓3σ̂b̂ for HH, KD, ND populations and the same holds for DD, HD
populations.

These different slope and intercept values for different populations imply a
different chemical evolution for each region (HH, KD, ND, or DD if KD and
ND evolve as a single system).

3 Results

The EDAD, ψQ = log[∆N/(N∆φQ)], inferred from HH, KD, ND, DD sub-
samples, is listed in Tables 4-5 for oxygen and iron (Q = O, Fe), respectively.
Data are equally binned in [Q/H] taking ∆[Q/H] = ∆ log φQ = 1dex, where
the normalized abundance, φQ, is listed in the first column, while the EDAD,
ψQ, and the number, ∆N , of subsample stars within the abundance range,
exp10(log φQ ∓∆ logφQ), are listed in the following columns for each related
stellar population. Uncertainties in ψQ, ∆∓ψQ, are calculated as Poisso-
nian errors, which implies ∆−ψQ → ∞ for bins populated by a single star,
∆N = 1.

The above mentioned EDAD is plotted in Figs. 4-5 for O and Fe, respec-
tively, separating results for each stellar population (ND, KD, DD = ND +
KD + KN, and HH) in a different panel. Lower uncertainties attaining the
horizontal axis (decreasing down to negative infinity) relate to bins popu-
lated by a single star. Regression lines (dashed lines) have been performed
to points in each stage (defining bins populated by at least two stars).

Arithmetic mean and rms error can be inferred from the EDAD as (C13a;
C13b):

log φ = [Q/H] =
1

N

N
∑

i=1

[Q/H]i ; (6)

σlog φ = σ[Q/H] =

{

1

N − 1

N
∑

i=1

(

[Q/H]i − [Q/H]
)2
}1/2

; (7)

where Q = O, Fe, and N is the subsample population. The results are listed
in Table 6 for subsamples, HH, KD, ND, DD.

4 Discussion

The following main points shall be discussed throughout the current section,
concerning (1) abundance distributions and their interpretation within the
framework of simple MCBR models, where special effort is devoted to inflow
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Table 4: Oxygen empirical differential abundance distribution (EDAD), in-
ferred from different subsamples, where δ = ∆N to save space. See text for
further details.

subsample: HH KD ND DD
φO ψO δ ψO δ ψO δ ψO δ

2.5286D−2 +9.2507D−1 2
3.1833D−2 +1.0012D+0 3
4.0075D−2
5.0451D−2 +3.2404D−1 1
6.3514D−2 +2.2404D−1 1
7.9960D−2 +1.2404D−1 1
1.0066D−1 +5.0116D−1 3
1.2673D−1 +2.2507D−1 2
1.5954D−1 −1.7596D−1 1 −8.9561D−1 1 −1.4289D+0 1
2.0085D−1 +3.2610D−1 4 −5.1849D−1 3 −1.0518D+0 3
2.5286D−1 +5.2713D−1 8 −7.9458D−1 2 −1.3278D+0 2
3.1833D−1 −1.7493D−1 2 −4.1746D−1 6 −8.7432D−1 5 −6.8748D−1 11
4.0075D−1 +1.2301D−1 5 −2.1643D−1 12 −6.7329D−1 10 −4.8645D−1 22
5.0451D−1 +3.7493D−1 2 +3.5751D−2 27 −1.2984D−1 44 −7.7612D−2 71
6.3514D−1 −2.9884D−1 3 +6.0689D−2 36 +7.5216D−3 76 +2.4208D−2 113
7.9960D−1 −5.7493D−1 2 +9.4583D−2 49 −9.5042D−3 92 +2.3418D−2 142
1.0066D+0 −9.7596D−1 1 −9.3553D−2 40 +7.2836D−2 140 +3.1201D−2 182
1.2673D+0 −3.9767D−1 25 −1.5626D−1 104 −2.1828D−1 129
1.5954D+0 −9.9252D−1 8 −7.2922D−1 35 −7.8542D−1 44
2.0085D+0 −1.2175D+0 6 −1.6743D+0 5 −1.4497D+0 12
2.5286D+0 −2.1723D+0 2 −2.3278D+0 2
total: 41 215 513 734

13



Table 5: Iron empirical differential abundance distribution (EDAD), inferred
from different subsamples, where δ = ∆N to save space. See text for further
details.

subsample: HH KD ND DD
φFe ψFe δ ψFe δ ψFe δ ψFe δ

5.0451D−3 +1.6251D+0 2
6.3514D−3
7.9960D−3
1.0066D−2 +1.0240D+0 1
1.2673D−2 +1.2251D+0 2
1.5954D−2 +8.2404D−1 1
2.0085D−2
2.5286D−2
3.1833D−2 +8.2507D−1 2
4.0075D−2
5.0451D−2 +3.2404D−1 1
6.3514D−2 +7.0116D−1 3 −1.9458D−1 2 −7.2784D−1 2
7.9960D−2 +4.2507D−1 2 −2.9458D−1 2 −8.2784D−1 2
1.0066D−1 +7.2301D−1 5 −6.9561D−1 1 −1.2289D+0 1
1.2673D−1 +7.0219D−1 6 −3.1849D−1 3 −8.5175D−1 3
1.5954D−1 +6.6914D−1 7 +3.3484D−1 17 −9.7226D−1 2 −1.5012D−1 19
2.0085D−1 +2.5071D−2 2 +2.5966D−1 18 −7.7123D−1 4 −1.8645D−1 22
2.5286D−1 +1.0851D−1 16 −3.5935D−1 13 −1.6647D−1 29
3.1833D−1 +2.2301D−1 5 +2.5154D−1 28 −2.9454D−1 19 −5.6773D−2 47
4.0075D−1 −5.7596D−1 1 +1.1936D−1 26 +1.2605D−1 63 +1.2052D−1 89
5.0451D−1 −1.5402D−2 24 +5.2783D−2 67 +3.0171D−2 91
6.3514D−1 −7.7596D−1 1 −1.5319D−1 22 −5.3748D−2 66 −8.4388D−2 88
7.9960D−1 −2.9458D−1 20 −7.0202D−2 80 −1.2887D−1 100
1.0066D+0 −6.5422D−1 11 −4.7986D−2 106 −1.6068D−1 117
1.2673D+0 −7.5422D−1 11 −4.2510D−1 56 −5.0280D−1 67
1.5954D+0 −1.0505D−0 7 −8.2613D−1 28 −8.8480D−1 35
2.0085D+0 −1.2966D−0 5 −1.6743D+0 5 −1.5289D+0 10
2.5286D+0 −1.7946D−0 2 −1.8712D+0 4 −1.8507D+0 6
total: 41 215 513 734
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Table 6: Star number, N , mean abundance, [Q/H], rms error, σ[Q/H], Q =
O, Fe, inferred for different subsamples (sub). See text for further details.

N [O/H] σ[O/H] [Fe/H] σ[Fe/H] sub
41 −0.6915 0.4274 −1.0393 0.5020 HH
215 −0.1172 0.1979 −0.3564 0.3174 KD
513 −0.0511 0.1580 −0.1401 0.2161 ND
734 −0.0699 0.1733 −0.2028 0.2690 DD

and outflow considerations, and evolution of different regions; (2) iron yields
related to both sp and np processes, and oxygen-to-iron yield ratios.

4.1 Abundance distributions and their interpretation

4.1.1 Oxygen and iron TDAD

The theoretical differential abundance distribution (TDAD),
ψQ = log[ dN/(N dφQ)], predicted by simple MCBR chemical evolution mod-
els, is a broken line (e.g., Caimmi 2011a, 2012a). The straight line defined
by each segment can be expressed as (Pagel 1989):

ψQ = αQφQ + βQ ; (8)

φQ =
ZQ

(ZQ)⊙
; φH =

X

X⊙

; (9)

where X = ZH according to the standard notation, Q is a selected element
heavier than He (O and Fe in our case), log φQ = [Q/H] as a good approxi-
mation and (ZQ)⊙ is the solar abundance.

The explicit expression of TDAD slope and intercept reads (e.g., Caimmi
2011a, 2012a):

αQ = − 1

ln 10

(ZQ)⊙
p̂Q

(1 + κ) ; (10)

βQ = log

[

µi

µi − µf
(− ln 10)αQ

]

− αQ(φQ)i ; (11)

where p̂Q is the yield per stellar generation (e.g., Pagel and Patchett 1975) of
the sp element, Q, and κ is the flow parameter, µ the active (i.e. available for
star formation) gas mass fraction, i and f denote values at the start (minimum
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Q abundance) and the end (maximum Q abundance) of the stage considered,
respectively.

More specifically, the following flow regimes can be defined (e.g., Caimmi
2011a, 2012a): outflow (κ > 0), where star formation is lowered (Hartwick
1976); stagnation (κ = 0), where star formation is neither lowered nor en-
hanced; weak inflow (−1 < κ < 0), where star formation is weakly enhanced
and gas mass fraction monotonically decreases in time (Caimmi 2007); steady
inflow (κ = −1), where star formation is moderately enhanced and gas mass
fraction remains unchanged; strong inflow (κ < −1), where star formation is
strongly enhanced and gas mass fraction monotonically increases in time.

Owing to Eq. (10), strong inflow, steady inflow, weak inflow or stagnation
or outflow, imply positive, null, negative TDAD slope, respectively. In cur-
rent ΛCDM scenarios, strong inflow may safely be related to an assembling
stage of galaxy evolution, steady state inflow to a formation stage, weak in-
flow or stagnation or outflow to a next evolution stage (e.g., Finlator and
Davé 2008; Davé et al. 2011a,b, 2012).

4.1.2 Oxygen and iron EDAD

Within the framework of simple MCBR chemical evolution models, the TDAD
of sp elements may be considered in connection with different stages of evo-
lution. More specifically, the early stage with positive slope relates to strong
gas inflow (SI), where the gas mass fraction is increasing in time; the middle
stage with nearly flat slope relates to (nearly) steady state gas inflow (SS),
where the gas mass fraction remains (more or less) unchanged in time; the
late stage with negative slope relates to weak gas inflow or outflow (WI),
where the gas mass fraction is decreasing in time.

Oxygen and iron EDAD shown in Fig. 4 and 5, respectively, for disk pop-
ulations is characterized by three distinct stages exhibiting different linear
trends. For each stage, regression lines shown in Figs. 4-5 have been de-
termined using standard methods (e.g., Isobe et al. 1990; Caimmi 2011b,
2012b), leaving aside points related to bins containing a single star, where
∆−ψQ → ∞. The regression procedure has been performed on HH, KD, ND,
DD subsamples and the results are shown in Tables 7-8 for oxygen and iron,
respectively. The transition points between adjacent stages are determined
as intersections of related regression lines and the results are shown in Ta-
ble 9 for both oxygen and iron, which are marked as dotted vertical lines in
Figs. 4 and 5, respectively.

By comparing with the theoretical MCBR model expectations, these
trends may be interpreted as follows: the early stage with positive slope
may safely be related to assembling (A), the middle stage with nearly flat
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Table 7: Regression line slope and intercept estimators, α̂O and β̂O, and
related dispersion estimators, σ̂α̂O

, and σ̂β̂O
, for regression models applied to

the oxygen empirical differential abundance distribution (EDAD) plotted in
Fig. 4, related to different regions (reg). The method has dealt with each
stage (S) separately: A - assembling, F - formation, E - evolution. A single
stage (E) has been considered for halo population due to the incompleteness
of related subsample. Bins containing a single star are not considered in the
regression.

S α̂O σ̂α̂O
β̂O σ̂β̂O

reg

A +3.2643 E−0 1.8045 E−0 −1.4001 E−0 5.0690 E−1 KD
A +2.3871 E−0 7.5607 E−1 −1.4681 E−0 4.2787 E−1 ND
A +3.9590 E−0 1.0948 E−0 −2.0445 E−0 3.3269 E−1 DD
F +1.9851 E−1 4.4600 E−3 −6.4657 E−2 2.7360 E−3 KD
F +2.0642 E−1 1.3444 E−1 −1.4400 E−1 1.1628 E−1 ND
F +1.6397 E−2 1.2453 E−2 +1.2886 E−2 9.6177 E−3 DD
E −1.2001 E−0 1.0914 E−1 +1.0764 E−0 1.2480 E−1 KD
E −1.4891 E−0 1.8978 E−1 +1.6313 E−0 2.3646 E−1 ND
E −1.5392 E−0 8.5043 E−2 +1.6397 E−0 1.2252 E−1 DD
E −1.8764 E−0 3.0416 E−1 +8.1914 E−1 1.1220 E−1 HH
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Table 8: Regression line slope and intercept estimators, α̂Fe and β̂Fe, and
related dispersion estimators, σ̂α̂Fe

, and σ̂β̂Fe
, for regression models applied

to the iron empirical differential abundance distribution (EDAD) plotted in
Fig. 5, related to different regions (reg). The method has dealt with each
stage (S) separately: A - assembling, F - formation, E - evolution. A single
stage (E) has been considered for halo population due to the incompleteness
of related subsample. For KD subsample, stages F and E are also considered
as a single stage, FE. Bins containing a single star are not considered in the
regression.

S α̂Fe σ̂α̂Fe
β̂Fe σ̂β̂Fe

reg

A +6.9323 E−0 3.2108 E−0 −8.2705 E−1 4.5176 E−1 KD
A +4.1103 E−0 5.0477 E−1 −1.5270 E−0 1.7900 E−1 ND
A +7.5777 E−0 3.3920 E−0 −1.4135 E−0 4.8156 E−1 DD
F −4.8416 E−1 7.8092 E−1 +3.5966 E−1 1.9595 E−1 KD
F −2.5801 E−1 1.1309 E−1 +1.7609 E−1 8.4070 E−2 ND
F −1.6209 E−1 1.2974 E−1 +2.9866 E−2 8.5168 E−2 DD
E −9.5208 E−1 4.8752 E−2 +4.8016 E−1 4.3781 E−2 KD
E −1.3329 E−0 1.0979 E−1 +1.2826 E−0 1.4090 E−1 ND
E −1.2115 E−0 7.2617 E−2 +1.0469 E−0 9.5796 E−2 DD
E −3.1707 E−0 8.8934 E−1 +1.0858 E−0 1.4100 E−1 HH
FE −9.3301 E−1 4.2058 E−2 +4.5619 E−1 3.3064 E−2 KD
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Table 9: Transition (trans) points between adjacent stages, as determined
from the intersection of related regression lines, (φQ, ψQ), Q = O, Fe, for
the empirical differential abundance distribution (EDAD) plotted in Figs. 4-
5, respectively, with regard to HH, KD, ND, DD subsample (sub). For KD
subsample, stages F and E are also considered as a single stage, FE, with
regard to iron. Regression lines outside the domain of subsample abundance,
denoted as stage O, are assumed to be vertical lines.

trans φO ψO φFe ψFe sub

O-E 2.2387 E−2 +7.7714 E−1 4.4668E−2 +9.4414E−1 HH
E-O 8.9125 E−1 −8.5318 E−1 3.5481E−1 −3.9241E−1 HH

O-A 1.7783 E−1 −8.1960 E−1 5.6234E−2 −4.3722E−1 KD
A-F 4.3559 E−1 +2.1810 E−2 1.6001E−1 +2.8219E−1 KD
F-E 8.1590 E−1 +9.7304 E−2 2.5752E−1 +2.3498E−1 KD
E-O 2.2387 E−0 −1.6102 E−0 2.8184E−0 −2.2032E−0 KD
A-FE 1.6315E−1 +3.0397E−1 KD

O-A 2.8184 E−1 −7.9533 E−1 1.4125E−1 −9.4641E−1 ND
A-F 6.0720 E−1 −1.8662 E−2 3.8987E−1 +7.5496E−2 ND
F-E 1.0470 E−0 +1.2229 E−1 1.0294E−0 −9.6202E−2 ND
E-O 2.8184 E−0 −2.5657 E−0 2.8184E−0 −2.4742E−0 ND

O-A 1.7783 E−1 −1.3404 E−0 5.6234E−2 −9.8735E−1 DD
A-F 5.2182 E−1 +2.1442 E−2 1.8648E−1 −3.6075E−4 DD
F-E 1.0458 E−0 +3.0034 E−2 9.6920E−1 −1.3351E−1 DD
E-O 2.8184 E−0 −2.5252 E−0 2.8184E−0 −2.3674E−0 DD
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slope to formation (F), the late stage with negative slope to evolution (E).
The last stage could be in connection with different trends implying two
fitting straight lines which, in general, form a knee.

In this view, A stage is characterized by SI inflow regime, F stage by SS
inflow regime, E stage by WI inflow (to be intended as including outflow)
regime, as shown in Fig. 4 for oxygen EDAD. Iron EDAD exhibits a similar
trend with respect to oxygen and, in addition, a peak related to F stage, as
shown in Fig. 5. If delayed recycling via SNIa progenitors is the main process
which makes iron np element, then the above mentioned peak can be related
to the onset of SNIa events.

In summary, the following informations can be inferred from oxygen and
iron EDAD via Table 9: (i) the transition from SI to SS inflow regime took
place at [O/H] ≈ −0.36 for the thick disk and [O/H] ≈ −0.22 for the thin
disk; the transition from SS to WI inflow regime took place at [O/H] ≈ −0.09
for the thick disk and [O/H] ≈ +0.02 for the thin disk; (ii) the onset of SNIa
events took place at [Fe/H] ≈ −0.80 for the thick disk and [Fe/H] ≈ −0.40
for the thin disk. No conclusion can be drawn for the halo, due to the
incompleteness of related subsample.

With regard to KD subsample, oxygen EDAD shows a similar trend to
the one found in an earlier investigation (Caimmi 2012a) for a sample of 133
thick disk stars from Ramı́rez et al. (2007). However, when we compare the
present results with those from C13b, obtained with the sample of Ramı́rez et
al. (2012), we see that, while iron EDAD exhibits a similar trend to that one,
within the common abundance range, the contrary holds for oxygen EDAD.
More specifically, fitting straight lines within the common abundance range
([O/H] < −0.05) show a negative slope instead of positive or close to zero
as outlined in Fig. 4, top right panel (φO < 0.9). The above mentioned
discrepancy is probably owing to the combined effect of poor subsample
(16 stars compared with the 133 from Ramı́rez et al. 2007), biases against
high iron abundance, larger oxygen abundance scatter with respect to iron
abundance.

4.1.3 Nonlinear iron TDAD

Let Q be a selected element for which both the empirical [Q/H]-[O/H] rela-
tion:

[Q/H] = aQ[O/H] + bQ ; (12)

and oxygen EDAD have been inferred from a selected star sample. Using
the relation between number abundance and mass abundance (e.g., Caimmi

20



2007; C13b):

log
φQ

φH
= [Q/H] ; (13)

after little algebra Eq. (12) translates into:

φQ = BQφ
1−aQ
H φ

aQ
O ; BQ = exp10(bQ) ; (14)

where φH is the hydrogen abundance normalized to the solar value, which
is expected to change only slightly in time and may safely be assumed as
constant. Accordingly, a differentiation on both sides of Eq. (14) yields:

dφQ = BQaQ

(

φO

φH

)aQ−1

dφO ; (15)

where dφQ and dφO may be conceived as infinitely thin bins centered on φQ

and φO, respectively, both containing an equal infinitesimal number of stars,
dN .

Finally, the TDAD of the element, Q, may be expressed as:

ψQ = log

(

dN

N dφQ

)

= log

(

dN

N dφO

dφO

dφQ

)

= ψO + log

(

dφO

dφQ

)

; (16)

and the substitution of Eqs. (8) and (15) into (16) after some algebra yields:

ψQ = αOφO + βO − bQ − log aQ − (aQ − 1) log

(

φO

φH

)

; (17)

which, in terms of Q abundance, by use of Eq. (14), after some algebra trans-
lates into:

ψQ = αQ

(

φQ

φH

)1/aQ

φH + βQ − (aQ − 1) log

(

φQ

φH

)1/aQ

; (18)

αQ =
αO

B
1/aQ
Q

; βQ = βO − log aQ − bQ
aQ

; (19)

where hydrogen abundance, φH, may safely be put equal to unity. If the
element, Q, is sp, aQ = 1, then Eq. (18) reduces to (8).

The special case of iron, related to HH, KD, ND, DD subsamples, is
plotted in Fig. 6 using the results listed in Tables 3 and 7, and compared with
its empirical counterpart shown in Fig. 5. The SS inflow regime, inferred from
oxygen EDAD via Eq. (14), is marked by dotted vertical lines. An inspection
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of Fig. 6 shows iron TDAD, expressed by Eq. (18) where Q = Fe, φH = 1, and
the values of coefficients are inferred from Tables 3 and 7 via Eq. (19), can be
approximated, to a first extent, by regression lines to iron EDAD for different
inflow regimes, shown in Fig. 5. Therefore simple MCBR chemical evolution
models may safely be used for the description of iron chemical evolution,
with regard to subsamples under consideration.

4.1.4 Inflow/outflow rate for different populations

With regard to oxygen, which may safely be conceived as sp element within
the framework of simple MCBR chemical evolution models, the assumption
of universal stellar IMF implies constant oxygen yield, p̂O, for different pop-
ulations. Though products of stellar nucleosynthesis vary with the initial
metallicity (e.g., Woosley and Weaver 1995), still oxygen and iron yields per
star generation show a mild dependence (e.g., Yates et al. 2013) which can
be neglected to a first extent.

Accordingly, the following relation (C13b) is easily inferred from Eq. (10):

(αO)XY

(αO)WZ
=

1 + κXY

1 + κWZ
; (20)

where κ is the flow parameter, proportional to inflow (κ < 0) or outflow (κ >
0) rate, as explained, and XY, WZ, identify subsamples under consideration.
For constant effective yield, p̂O/(1 + κ), i.e. constant flow parameter, κ,
the αO ratio related to different regions remains unchanged. Then αO ratios
different from unity imply different inflow or outflow rate for different regions.

Oxygen TDAD slopes, αO, are inferred from the data, which implies
constraints on flow parameters related to different environments, via Eq. (20).
Keeping in mind regression lines exhibit slope of equal sign for a selected
stage, as shown in Table 7, Eq. (20) discloses that related flow parameters
must be both larger/lower than or equal to −1, which implies the additional
condition, (αO)XY/(αO)WZ > 0, holds for a selected stage according to the
results listed in Table 7. Little algebra shows the correlation between slope
ratio and flow parameter ratio, for assigned values of κWZ, as:

(αO)XY

(αO)WZ

≤

> 1 ;
κXY

κWZ

≤

> 1 ; κWZ ≤ −1 ; κWZ ≥ 0 ; (21a)

(αO)XY

(αO)WZ

≤

> 1 ;
κXY

κWZ

≥

< 1 ; −1 ≤ κWZ ≤ 0 ; (21b)

which have to be read taking into consideration both lower (first alterna-
tive) and upper (second alternative) inequalities, where the equality (third
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Table 10: Oxygen regression line slope ratio, sO = (αO)XY/(αO)WZ, and flow
parameters, κWZ, inferred from Eq. (20) for a reference value, κHH = 10, with
regard to different subsamples, XY, WZ; XY = ND, HH; WZ = KD, ND,
DD; and different inflow regime (IR), strong inflow (SI), steady state inflow
(SS), weak inflow or outflow (WI). The reference value assumed for the flow
parameter is valid only in WI regime. See text for further details.

IR sO κWZ XY WZ
SI 0.7313 ND KD
SS 1.0399 ND KD
WI 1.2409 ND KD

1.5636 6.0350 HH KD
1.2600 7.7302 HH ND
1.2191 8.0230 HH DD

alternative) separates the two above. The limit of dominant inflow/outflow
rate, |κ| ≫ 1, for both XY and WZ subsamples, implies (αO)XY/(αO)WZ ≈
κXY/κWZ to a good extent.

Then the knowledge of oxygen TDAD fractional slopes, sO = (αO)XY/(αO)WZ,
quantifies restrictions on the flow parameter ratio, κXY/κWZ. Oxygen TDAD
fractional slopes are listed in Table 10 for different inflow regimes (IR) and
different subsamples (XY, WZ). The results presented in Tables 7 and 10 dis-
close that oxygen regression line slope ratios are consistent with unity within
∓σ̂α̂ for disk populations and within ∓2σ̂α̂ for disk and halo populations.

Accordingly, inflow rate of comparable extent took place within the thick
and the thin disk during SI inflow regime (κ ≪ −1), with a difference not
exceeding a factor of about 1.3. The same holds for SS inflow regime, in that
a null slope of the regression line relates to κ = −1 (Caimmi 2011a) and the
slopes considered are slightly larger than zero, which implies flow parameters
slightly lower than negative unity, as shown above.

Concerning WI inflow regime, outflow rate could be conceived as strong
for halo population, with a reference flow parameter value, κHH = 10 (e.g.,
Hartwick 1976), which via Eq. (20) yields lower values for the disk population,
but within the same order of magnitude, as shown in Table 10. On the other
hand, substantial gas outflow from the disk could be avoided if (i) the HH
subsamble is representative of the inner halo and (ii) strong outflow rate
relates to the outer halo, which exhibits different trends with respect to the
inner halo in both kinematics and chemical composition (e.g., Carollo et
al. 2007, 2010). The above considerations hold within the framework of
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simple MCBR chemical evolution models, which imply (among others) the
assumption of instantaneous mixing.

In the special case where sample stars belong to a single generation, when
all stars have a similar abundance for O and Fe, an EDAD different to a delta
function could only be due to cosmic scatter. This is, of course, excluded
for the thin disk, where star formation is currently going on, but should be
considered for both the thick disk and the halo, which host old populations
only.

If the cosmic scatter obeys a lognormal distribution, where the mean and
the variance can be evaluated from the data, the TDAD reads (C13a; C13b):

(ψ)cs = log

{

1

ln 10

1√
2πσQ

exp

[

−(log φQ − logφQ)
2

2σ2
Q

]

1

φQ

}

; (22)

where the index, cs, denotes cosmic scatter, logφQ = [Q/H] and σQ = σ[Q/H].
Related curves, expressed by Eq. (22), are plotted in Figs. 4-5 as full curves,
for Q = O, Fe, with regard to ND, KD, DD, HH subsamples, from top left
in clockwise sense. To this aim, the values listed in Table 6 have been used.
An inspection of Figs. 4-5 shows both oxygen and iron EDAD cannot be due
to cosmic scatter for disk population, as expected for the thin disk, while it
remains a viable alternative for halo population provided HH subsample can
be considered as representative.

4.1.5 Evolution of the thick disk

According to recent investigations (Haywood et al. 2013; Snaith et al.
2014), the history of the thick disk was characterized by high star forma-
tion efficiency, yielding a global mass comparable to the amount of the thin
disk. In particular, the inferred star formation rate (Snaith et al. 2014,
Fig. 2b) relates to three different stages which, by analogy with three dif-
ferent stages related to oxygen EDAD, can be similarly defined here as: A
(13.5

>∼ tlb/Gyr
>∼ 12.5); F (12.5

>∼ tlb/Gyr
>∼ 9.5); E (9.5

>∼ tlb/Gyr
>∼ 8.0);

where tlb is the lookback time and star formation within the thick disk is
assumed to end at tlb/Gyr ≈ 8.0.

Within the framework of simple MCBR models, the transition between
different stages takes place at φFe ≈ 0.2 and φFe ≈ 0.5 (Fig. 6, top right panel)
or [Fe/H] ≈ −0.70 and [Fe/H] ≈ −0.30, respectively. By use of the inferred
[Si/Fe]-[Fe/H] relation (Snaith et al. 2014, Fig. 2d), the above mentioned
values relate to [Si/Fe] ≈ 0.22 and [Si/Fe] ≈ 0.15, respectively which, in turn,
via the inferred [Si/Fe]-age relation (Snaith et al. 2014, Fig. 2a) correspond
to tlb/Gyr ≈ 12.5 and tlb/Gyr ≈ 10.0, respectively.
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Table 11: Normalization constant, (CU)N, flow parameter, κU, active gas
mass fraction, (µU)f , star mass fraction, (sU)f , inflowed or outflowed gas mass
fraction, (DU)f , inferred from simple MCBR models related to the thick disk
(Fig. 4, top right panel). See text for further details.

U (CU)N κU (µU)f (sU)f (DU)f

A 1.1974E−1 −8.7722E−0 6.9409E−0 7.6437E−1 −6.7052E+0
F 5.5650E−1 −1.4726E−0 8.2586E−0 3.5525E−0 −1.0811E+1
E 1.0004E−0 +1.8573E−0 1.6196E−1 6.3862E−0 −5.5481E+0

The chemical evolution of the thick disk can be inferred from oxygen
EDAD via simple MCBR models. The results are listed in Table 11, with
regard to the normalization constant for matching oxygen TDAD with related
EDAD, (CU)N, the flow parameter, κU, the active (i.e. available for star
formation) gas mass fraction, (µU)f , the star mass fraction, (sU)f , the inflowed
or outflowed gas mass fraction, (DU)f , where mass fractions are related to
the initial total mass, assumed to be entirely gaseous, µi = 1, and the index,
f, marks the end of each stage, U = A, F, E. For further details, an interested
reader is addressed to earlier attempts where MCBR models are formulated
(Caimmi 2011a, 2012a).

An inspection of Table 11 shows a net gas inflow larger than the initial
mass by a factor of about 10.8, and a final star mass fraction of about 6.39,
slightly larger than a final active + outflowed gas mass fraction of about 5.71.
Accordingly, the thick and the thin disk are comparable in mass provided
the thin disk was built up from the gas left after thick disk formation, as
suggested in recent investigations (Haywood et al. 2013; Snaith et al. 2014).
In addition, the flow parameter, κU, equals (in absolute value) about 8.77
in strong inflow regime, U = A; about 1.47 in (nearly) steady state inflow
regime, U = F; about 1.86 in outflow regime, U = E.

Within the framework of simple MCBR models yielding the results listed
in Table 11, the history of the thick disk can be inferred from the above
mentioned findings (Haywood et al. 2013; Snaith et al. 2014) as follows.

(1) A short (about 1.0 Gyr) stage in strong inflow (κA ≈ −8.77) regime,
where the active gas and the star mass fraction (with respect to the
initial mass) grow up to (µA)f ≈ 6.94 and (sA)f ≈ 0.76, respectively.

(2) A long (about 2.5 Gyr) stage in (nearly) steady state inflow (κA ≈
−1.47) regime, where the active gas and the star mass fraction grow
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up to (µF)f ≈ 8.26 and (sF)f ≈ 3.55, respectively.

(3) A medium (about 1.5 Gyr) stage in outflow (κA ≈ 1.86) regime, where
the active gas mass fraction decreases down to (µE)f ≈ 0.16 and the
star mass fraction grows up to (sE)f ≈ 6.39, respectively.

If the global gas mass fraction left at the end of thick disk evolution,
(µE)f+(DE)f ≈ 5.71, is used for building up the thin disk, assuming (Mthin)f =
5.71 1010m⊙ for simplicity, then the initial thick disk mass amounts to (Mthick)i =
1010m⊙, which grows up to (Mthick)f = 6.39 1010m⊙ at the end of evolution,
comparable to thin disk mass, as suggested in recent attempts (Haywood et
al. 2013; Snaith et al. 2014).

4.2 Yields and yield ratios

4.2.1 Iron production via sp and np processes

Let Q be a selected element for which the empirical [Q/H]-[O/H] relation
has been linearly fitted according to Eq. (12). If only the contribution of sp
processes is taken into consideration, Eq. (12) reduces to:

[Qsp/H] = [O/H] + bQsp
; (23)

where oxygen may be thought of as sp element to a good extent.
By use of Eq. (13), after little algebra Eq. (23) translates into:

φQsp
= BQsp

φO ; BQsp
= exp10(bQsp

) ; (24)

which, together with Eq. (14), implies the following:

φQsp

φQ
=
BQsp

BQ

(

φO

φH

)1−aQ

; (25)

φQnp

φQ
= 1− φQsp

φQ
; (26)

where φQnp
is the amount of the element, Q, produced via np processes.

The particularization of Eq. (25) to the minimum abundance exhibited
by subsample stars, denoted by the index, m, yields:

(

φQsp

φQ

)

m

=
BQsp

BQ

[(

φO

φH

)

m

]1−aQ

; (27)

where both (φQsp
)m and BQsp

are unknown while the remaining quantities
can be inferred from the data. For sufficiently old and low-metallicity stars,
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as it is in the case under consideration, the abundance fraction, (φQsp
/φQ)m,

may safely be put equal to unity. Accordingly, Eq. (27) reduces to:

BQsp

BQ
=

[(

φO

φH

)

m

]aQ−1

; (28)

and the substitution of Eq. (28) into (25) after some algebra yields:

φQsp

φQ
=

[

φO/(φO)m
φH/(φH)m

]1−aQ

; (29)

finally, the substitution of Eq. (28) into (24) produces:

φQsp
= BQ

[(

φO

φH

)

m

]aQ−1

φO ; (30)

which, on the (OφOφQ) plane, represents a straight line passing through the
origin and the point, [(φO)m, (φQ)m].

The special case of iron, related to HH, KD, ND, DD subsamples, taking
φH = 1 (which implies hydrogen abundance in long-lived stellar atmospheres
changes only slightly with respect to the sun), is plotted in Fig. 7 for both
global (full curves) and partial (sp - dashed curves; np - dotted curves)
abundances. The abundance range related to the SS inflow regime inferred
from oxygen EDAD, plotted in Fig. 4, is marked by dotted vertical lines.
An asterisk on the global abundance curve denotes the peak of iron EDAD
shown in Fig. 5.

An inspection of Fig. 7 discloses that iron production via sp and np pro-
cesses is comparable, leaving aside lower abundances, for HH (φO < 3), KD
(φO < 1), ND (1 < φO < 3), DD (φO < 1) subsample, while the contrary
holds for higher abundances exceeding the above mentioned thresholds.

The assumption of minimum subsample star abundance entirely related
to sp processes, (φFesp)m = (φFe)m, allows an explicit expression of BQsp

,
Eq. (28), and then φQsp

, Eq. (29). Alternatively, the following working hy-
potheses can be made: (a) the above assumption, which implies the validity
of Eqs. (28)-(29), is restriced to the thick disk, where stars are globally older
and metal poorer than in other disk subsamples, and (b) the φQsp

− φO

relation, expressed by Eq. (24), is universal i.e. BQsp
has the same value re-

gardless of the population, in particular it can be inferred from Eqs. (28)-(29)
related to the thick disk. Accordingly, dashed lines plotted in Fig. 7 would
be changed into their counterpart related to the thick disk.

Then the minimum subsample (XY) star fractional abundance contributed

by sp processes,
[(

φQsp
/φQ

)

m

]

XY
, can be explicitly written via the following

steps.
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(i) Particularize Eq. (24) to minimum subsample star abundances and infer
[(

φQsp
/φQ

)

m

]

XY
.

(ii) Substitute BQsp
therein by use of Eq. (28).

(iii) Particularize Eq. (14) to minimum subsample star abundances and

infer
[

(φQ/φO)m

]

XY
.

(iv) Substitute
[

(φQ/φO)m

]

XY
into the above expression of

[(

φQsp
/φQ

)

m

]

XY
.

The result is:

[(

φQsp

φQ

)

m

]

XY

=
(BQ)KD

(BQ)XY

{

[(φO/φH)m]KD

}(aQ)KD−1

{

[(φO/φH)m]XY

}(aQ)XY−1
; (31)

where XY = HH, ND, DD, and XY = KD yields the unit value, as expected.
In the case under consideration, Q = Fe and φH ≈ 1 may safely be as-

sumed, as hydrogen abundance in long-lived stellar atmospheres is expected
to remain more or less unchanged with respect to solar abundance. Some
results are listed in Table 12, where φO is directly inferred from related sub-
sample; φFe and dφFe/ dφO are calculated via Eq. (14); φFesp/φFe is calculated
via Eq. (31); where all values hold for both the alternatives discussed above
with the exception of the last one, which is restricted to the second alter-
native. It is worth noticing comparable ( dφFe/ dφO)m values are shown for
HH and KD subsamples, and comparable ( dφFe/ dφO)M values for KD and
ND subsamples, in connection with a reference maximum oxygen abundance,
(φO)M = 3.

4.2.2 Iron-to-oxygen yield ratio

With regard to Fig. 6, the iron-to-oxygen yield ratio can be expressed in terms
of either iron-to-oxygen normalized abundance ratio, φFe/φO, via Eq. (2), or
slope ratio of regression lines related to a selected inflow regime for both
oxygen and iron EDAD, respectively, (αO)IR/(αFe)IR, via Eq. (10), as (C13b):

p̂Fe
p̂O

=
(ZFe)⊙
(ZO)⊙

φFe

φO
; (32)

p̂Fe
p̂O

=
(ZFe)⊙
(ZO)⊙

(αO)IR
(αFe)IR

; (33)

where IR = SI, SS, WI, denotes the inflow regime.
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Table 12: Minimum subsample (sub) oxygen abundance, (φO)m, and in-
ferred iron abundance, (φFe)m, related fractional iron abundance due to sp
processes, (φFesp/φFe)m, and slope of φFe-φO relation, ( dφFe/ dφO)m, with the
addition of its counterpart, ( dφFe/ dφO)M , for a reference maximum oxygen
abundance, (φO)M = 3. Iron abundances and slopes are determined via
Eq. (14). Fractional iron abundances are determined under the assumption
of universal φFesp-φO relation, according to Eq. (31), with a unit value related
to the lowest slope (KD subsample). See text for further details.

(φO)m (φFe)m (φFesp/φFe)m ( dφFe/ dφO)m ( dφFe/ dφO)M sub

2.52855D−2 7.89204D−3 7.20182D−1 3.665260D−1 8.427390D−1 HH
1.59541D−1 3.58617D−2 1 3.599973D−1 2.102907D−0 KD
3.18326D−1 1.77952D−1 3.98951D−1 7.635178D−1 1.734610D−0 ND
1.59541D−1 4.30047D−2 8.33903D−1 4.297271D−1 2.456852D−0 DD

In particular, SS inflow regime relates to regression lines with slopes close
to zero, as shown in Figs. 4 and 5, which implies slopes with different sign
for oxygen and iron, though consistent within the errors, as shown in Tables
7 and 8. On the other hand, the yield ratio has to be non negative in the
case under discussion, which implies Eq. (33) is physically meaningless or,
in other words, the yield ratio cannot be inferred via Eq. (33) for SS inflow
regime.

The substitution of Eq. (14), particularized to Q = Fe, into Eq. (32) after
little algebra yields:

p̂Fe
p̂O

=
(ZFe)⊙
(ZO)⊙

BFe

(

φO

φH

)aFe−1

; (34)

which depends on oxygen-to-hydrogen abundance ratio. With regard to a
selected inflow regime, the combination of Eqs. (33) and (34) produces:

bFe = logBFe = log

[

(αO)IR
(αFe)IR

]

− (aFe − 1) log

(

φO

φH

)

; (35)

which, keeping in mind bFe is inferred from the [Fe/H]-[O/H] empirical rela-
tion, discloses the extent to which iron TDAD, plotted in Fig. 5, fits to its
counterpart, depending on oxygen abundance, plotted in Fig. 6.

Leaving aside F stage, where oxygen and iron regression lines show small
but opposite slopes, (αO)SS > 0, (αFe)SS < 0, and Eq. (35) is undefined,
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marginal disagreement, marginal agreement, satisfactory agreement are found
for KD, DD, ND and HH subsamples, respectively. In other words, iron
TDAD plotted in Fig. 5 is marginally inconsistent, marginally consistent, sat-
isfactorily consistent with the empirical [Fe/H]-[O/H] relation for KD, DD,
ND and HH subsamples, respectively, even if they fit to related EDAD in all
cases.

The yield ratio, p̂Fe/p̂O, expressed by Eq. (34), as a function of iron abun-
dance, φFe, is plotted in Fig. 8 for ND, KD, DD, HH subsample (from top
left in clockwise sense), where different stages are marked by dotted vertical
lines, as in Fig. 6. Yields ratios inferred from EDAD regression lines are rep-
resented on related curves as asterisks for both A (left) and E (right) stage,
with no connection with iron abundance.

Theoretical yield ratios for a power-law IMF with exponent, −p = −2
(down) and −p = −3 (up), restricted to 9 ≤ m/m⊙ ≤ 20, are also shown for
different initial metal abundance, Z = 0.0004 (crosses), 0.004 (diamonds),
0.008 (triangles), 0.02 (squares), 0.05 (saltires), as inferred from an earlier
research (Portinari et al. 1998) under the restriction, ZFe/Z = (ZFe)⊙/Z⊙,
unless initial iron abundance used for the stellar evolution is known.

Lower values, by a factor not exceeding about two, are obtained in con-
nection with the following mass ranges: 12 ≤ m/m⊙ ≤ 20, 9 ≤ m/m⊙ ≤ 30,
12 ≤ m/m⊙ ≤ 30, 9 ≤ m/m⊙ ≤ 120. For further details on the stellar
mass range related to oxygen production and additional references, an inter-
ested reader is addressed to a recent research (Acharova et al. 2013) where,
in particular, an upper mass limit for SNII progenitors within the range,
19

<∼ m/m⊙
<∼ 32, with a preferred value, m ≈ 23m⊙, is derived a posteriori

from observations. A reduction of iron stellar yields by a factor of about two
has been inferred in recent researches (e.g., Wiersma et al. 2009; Yates et
al. 2013). Power-law exponents within the range, −3 < −p < −2, produce
results lying between the above mentioned extreme cases.

Semiempirical oxygen-to-iron yield ratios inferred for disk population
are consistent with their counterparts inferred from star evolution theory,
p̂Fe/p̂O ≈ 0.15, restricted to SNII progenitors (Acharova et al. 2013), which
is shown in Fig. 8 as a dotted horizontal line.

It is worth remembering semiempirical yield ratios plotted in Fig. 8 (full
curves) are expressed in the light of simple MCBR chemical evolution models
using the regression line of the empirical [Fe/H]-[O/H] relation, via Eq. (34),
where the lowest iron abundances are supposed in absence of np processes
i.e. from SNII progenitors. Under the alternative assumption of equal φFesp-
φO relation for different subsamples, the lowest iron abundance related to sp
processes should be reduced by a factor of about 0.4 at most, according to
the results listed in Table 12.
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On the other hand, theoretical yield ratios plotted in Fig. 8 (symbols)
relate to SNII progenitors and, for this reason, have to be compared with the
starting point (lowest iron abundance) of each curve. Taking into account the
above mentioned uncertainties, an inspection of Fig. 8 shows agreement to
an acceptable extent for subsolar iron abundance say, while the contribution
from np processes (mainly related to SNIa progenitors) has to be considered
for supersolar iron abundance (e.g., Wiersma et al. 2009).

If the iron-to-oxygen yield ratio increases with the metal abundance, Z,
while the integrated stellar yield for massive stars decreases with Z, it may
be interpreted as an increase of the np contribution with Z, which implies
an increase of SNIa rate with Z compared to SNII.

In this view, passing from lower to larger iron abundances, semiempiri-
cal iron-to-oxygen yield ratios are increased by a factor of about 2 for HH
subsample, 2.5 for ND and DD subsample, 5 for KD subsample. Then np
processes appear to be more efficient during thick disk evolution than during
thin disk and halo evolution, according to recent results implying a thick disk
formation initially in starburst and then more quiescent, over a time scale of
4-5 Gyr (Haywood et al. 2031; Snaith et al. 2014).

A lower contribution to Fe abundance from np processes, by a factor 1.15,
inferred a posteriori from observations in a recent research (Acharova et al.
2013) seems to be in contradiction with the empirical [Fe/H]-[O/H] relation,
expressed by Eq. (4) or Eq. (5).

5 Conclusion

A linear [Fe/H]-[O/H] relation has been inferred from different populations
sampled in a recent research (Ra13), namely HH (halo, N = 44); KD (thick
disk, N = 237); ND (thin disk, N = 538). Oxygen and iron empirical
differential abundance distribution (EDAD) have been determined for dif-
ferent subsamples, together with related theoretical differential abundance
distribution (TDAD), within the framework of simple multistage closed-
(box+reservoir) (MCBR) chemical evolution models.

The evolution of iron vs. oxygen mass abundance has been deduced from
the empirical [Fe/H]-[O/H] relation, and iron production via processes related
to simple primary (sp) and non simple primary (np) elements (sp and np
processes, respectively), has been estimated in two different alternatives. Iron
TDAD, inferred from empirical [Fe/H]-[O/H] relation and oxygen EDAD, has
been determined for different subsamples.

Iron-to-oxygen yield ratios have been deduced from the data in the frame-
work of simple MCBR chemical evolution models, including an example of
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comparison with theoretical counterparts computed for SNII progenitors with
both subsolar and supersolar initial metallicity, under the assumption of
power-law stellar initial mass function (IMF).

Oxygen and iron TDAD have been inferred from the data for different
populations, in the opposite limit of inhomogeneous mixing due to cosmic
scatter obeying a lognormal distribution whose mean and variance have been
evaluated from the related subsample.

The main results, concerning (a) iron production via sp and np processes;
(b) evolution and flow rate; (c) iron-to-oxygen yield ratios; are summarized
as follows.

(a1) Earlier results inferred from poorer subsamples (C13b) are supported
in the sense that stars display along a “main sequence”, expressed
as [Fe/H] = a[O/H] + b ∓ ∆b. For unit slopes, a = 1, a main se-
quence relates to constant [O/Fe] abundance ratio. The special cases,
(a, b,∆b) = (3/2,−1/8, 3/8), (4/3,−2/15, 4/15), imply only a few stars
lie outside the main sequence within the errors.

(a2) Regardless of the population, regression line slope estimators do not fit
to the unit slope within ∓3σ̂â and exhibit different values, which implies
SNIa events contributed to a fraction of iron production to a different
extent: lower for halo population and larger for thick disk population,
with thin disk population lying between the above mentioned two.

(a3) If lowest iron abundances in subsample stars arose from sp processes,
then a comparable amount of iron was produced via sp and np pro-
cesses with regard to F stage for disk population and after iron peak
for halo population. The above result holds for thin disk population
with regard to E stage, contrary to thick disk population, where iron
production via np processes is dominant. A similar trend is shown by
thin disk population, but not by halo population, under the alternative
assumption of equal φFesp-φO relation for different subsamples leaving
its counterpart, related to thick disk population, unchanged.

(a4) Iron TDAD, inferred from the empirical [Fe/H]-[O/H] relation and
oxygen TDAD determined from linear fits, yields a satisfactory agree-
ment with iron EDAD via a nearly linear trend for each stage.

(a5) A cosmic scatter, obeying a lognormal distribution, due to homoge-
neous mixing in chemical evolution models, gives a TDAD which is not
in agreement with the EDAD of the disk, and therefore this is not a
valid alternative to explain it. However, this possibility remains still
open for the halo.
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(b1) Earlier results inferred from poorer subsamples (Caimmi and Milanese
2009; Caimmi 2012a) are supported in the sense that oxygen EDAD
can be linearly fitted with regard to three different stages related to
different abundance ranges, namely: assembling (A, low abundance);
formation (F, middle abundance); evolution (E, high abundance). A
similar trend is shown by iron EDAD. Within the framework of simple
MCBR chemical evolution models (Caimmi 2011a; 2012a), each stage is
characterized by a different inflow regime: A - strong inflow; F - (nearly)
steady state inflow; E - weak inflow or outflow. A (nearly) steady
state inflow regime is in agreement with results from hydrodynamical
simulations (e.g., Finlator and Davé 2008; Davé et al. 2011a,b, 2012).
The outflow rate related to thick and thin disk evolution is less then,
but comparable to, outflow rate related to halo evolution, which is
known to be high (e.g., Hartwick 1976). A low outflow rate related to
disk evolution would imply (i) the halo subsample considered in the
current research is representative of the inner halo, and (ii) a higher
outflow rate relates to the outer halo.

(b2) Under the assumption that the gas lef after the evolution of the thick
disk was used for building up the thin disk, the two subsystems exhibit
comparable masses according to recent investigations (Haywood et al.
2013; Snaith et al. 2014).

(c1) Within the framework of simple MCBR chemical evolution models
(Caimmi 2011a; 2012a), iron-to-oxygen yield ratios, inferred from the
empirical [Fe/H]-[O/H] relation for different subsamples, are consistent
with theoretical results from SNII progenitor nucleosynthesis (Portinari
et al. 1998; Wiersma et al. 2009), provided substantial iron production
arises from SNIa events for supersolar abundances.
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Figure 1: The empirical [Fe/H]-[O/H] relation for HD stars sampled in Ra13.
Caption of symbols: normal main sequence dwarf stars - squares (NDn),
saltires (KDn), diagonalized squares (KNn), crosses (HHn); cool main se-
quence dwarf stars - triangles (HDc); giants - diamonds (HDg); outliers -
“at” symbols (HDo). Also shown for comparison are the “main sequences”,
[Fe/H] = [O/H]−0.45∓0.25 (dotted), 2[Fe/H] = 3[O/H]−0.25∓0.75 (dashed),
3[Fe/H] = 4[O/H]−0.40∓0.80 (full). Typical error bars are of the order of
the symbol dimensions. See text for further details.
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Figure 2: The empirical [Fe/H]-[O/H] relation for ND (top left), KD (top
right), HH (bottom left), HD (bottom right) stars sampled in Ra13. Bottom
right panel is the repetition of Fig. 1 for better comparison. Other captions
as in Fig. 1.
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Figure 3: Regression lines, [Fe/H] = a[O/H] + b, inferred for different popu-
lations, ND (top left), KD (top right), HH (bottom left), HD (bottom right).
Dashed lines relate to DD = ND + KD + KN. Slope and intercept values are
taken from related estimators listed in Table 3. The caption of the symbols
is the same as in Fig. 1.
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Figure 4: Oxygen empirical differential abundance distribution (EDAD) in-
ferred from ND, KD, DD = ND + KD + KN, HH, subsamples (from top
left in clockwise sense). Lower uncertainties attaining the horizontal axis
(decreasing up to negative infinity) relate to bins populated by a single star.
Dashed straight lines represent regression lines to points defining bins pop-
ulated by at least two stars. Transition points between adjacent stages are
marked as dotted vertical lines. Full curves represent oxygen theoretical dif-
ferential abundance distribution (TDAD) due to intrinsic scatter obeying a
lognormal distribution with mean and variance inferred from the data. See
text for further details.
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Figure 5: Iron empirical differential abundance distribution (EDAD) inferred
from ND, KD, DD = ND + KD + KN, HH subsamples (from top left in
clockwise sense). Lower uncertainties attaining the horizontal axis (decreas-
ing up to negative infinity) relate to bins populated by a single star. Dashed
straight lines represent regression lines to points defining bins populated by
at least two stars. The dotted straight line on top right panel represents the
regression line for the whole declining part of the EDAD. Transition points
between adjacent stages are marked as dotted vertical lines. Full curves rep-
resent iron theoretical differential abundance distribution (TDAD) due to
intrinsic scatter obeying a lognormal distribution with mean and variance
inferred from the data. See text for further details.
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Figure 6: Iron theoretical differential abundance distribution (TDAD) in-
ferred from the empirical [Fe/H]-[O/H] relation and oxygen empirical differ-
ential abundance distribution (EDAD), with regard to ND, KD, DD, HH
subsamples (from top left in clockwise sense). Iron EDAD is also shown for
comparison (captions as in Fig. 5). Dotted vertical lines mark steady state
(SS) inflow regime inferred from oxygen EDAD. See text for further details.
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Figure 7: Iron vs. oxygen mass abundance (normalized to solar values), in-
ferred from the empirical [Fe/H]-[O/H] relation, related to ND, KD, DD =
KD + ND + KN, HH subsamples (from top left in clockwise sense), under the
assumption of initial abundance fraction, (φFe sp/φFe)m = 1. Dashed, dotted
and full curves relate to iron production via sp, np, sp+np processes, respec-
tively. Dotted vertical lines mark the abundance range related to the steady
state (SS) inflow regime inferred from oxygen empirical differential abun-
dance distribution (EDAD). The abundance peak exhibited by iron EDAD
is denoted by an asterisk on related full curve. See text for further details.
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Figure 8: The yield ratio, y(Fe/O) = p̂Fe/p̂O, expressed by Eq. (34), as a
function of iron abundance, φFe, for ND, KD, DD, HH subsample (from top
left in clockwise sense). Dotted vertical lines mark different stages inferred
from oxygen EDAD. Asterisks on each curve represent yield ratios inferred
from EDAD regression lines for both A stage (left, with the exclusion of HH
subsample) and E stage (right), regardless of iron abundance. Theoretical
yield ratios for a power-law stellar initial mass function (IMF) with exponent,
−p = −2 (down) and−p = −3 (up), restricted to 9 ≤ m/m⊙ ≤ 20, are shown
for different initial metal abundance, Z = 0.0004 (crosses), 0.004 (diamonds),
0.008 (triangles), 0.02 (squares), 0.05 (saltires), where ZFe/Z = (ZFe)⊙/Z⊙ is
assumed. Power-law exponents within the range, −3 < −p < −2, produce
results lying between the above mentioned extreme cases. Different mass
ranges imply theoretical yield ratios reduced by a factor up to about two.
A semiempirical yield ratio inferred for disk population, restricted to SNII
progenitors, is shown as a dotted horizontal line. See text for further details.
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