
Gravitational Efects
and the

Motion of Stars



On the largest scales (galaxy clusters and larger), 
strong evidence that the dark matter has to be 
non-baryonic: 

●Abundances of light elements (hydrogen, helium and 
lithium) formed in the Big Bang depend on how many 
baryons (protons + neutrons) there were. 

●light element abundances + theory allow a measurement 
of the number of baryons 

●observations of dark matter in galaxy clusters suggest 
there is too much dark matter for it all to be baryons, 
must be largely non-baryonic. 

On galaxy scales no such simple argument exists. 
Individual types of dark matter can be constrained 
using various indirect arguments, but only direct probe 
is via gravitational lensing.



Dark Matter Candidates

● Many candidates for dark matter. 
– Dark Baryons

● Brown dwarfs?
● MaCHO's (Massive Compact Halo Objects)
● Astronomer sized rocks?
● Black Holes?

– Non-baryonic (exotic particles)
● WIMPS (Weakly Interacting Massive Particles)



● Photons are afected by gravitational felds and thus 
background objects can be distorted if there is a massive 
object in the line of sight

● If a star passes a massive body it will acquire a transverse 
velocity V

⊥
. 

● This transverse velocity can be show to be (see Section 3.2.2 
eqn. 3.49) 

Gravitational Lensing

V=2GM
bV



The angle that the mass is defected is: =2GM
bV 2

For a photon v=c and general relativity predicts that:

=4GM
bc2 =

2R s

b

R
s
 is known as the Schwarzchild radius and for a solar

mass object is about 3 km.

Note: the defection angle is derived for weak encounters
so b >>R

s
:

implies that �  is small (in radians)



For a background object at a distance of d
s
 from the 

Observer O and a point mass (the lens L) is at a distance d
L
.  

The Observer sees and image (I) of the source S' at an angle 

�   from the line of sight to the lens.



If d
s
 >> y, then  � ≈y/d

s
, � ≈(x-y)/d

LS 
and �

 �
≈x/d

s
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So now the equation for the apparent position becomes:

2−−E
2=0 With solutions:

±=
1
2
±24E

2 

If  is 0 (lens and source are exactly aligned) the we 
see a ring of light (an Einstein ring) with radius 

E
 .

If   > 0 then we see two images, one inside 
E
 and 

one outside 
E
.  



Strong Lensing

This is a case where the lens is massive enough to bend
light through a “large” angle.



Strong lensing usually requires a lens with mass about that
of a galaxy. Since galaxies are not point sources and have 
internal structure real lenses are more complex than our
example. 

What happens if you do have only a solar mass for the lens.
Assume that we are observing a star in the Galactic bulge
and a solar mass star passes between us and the source.

dS=8kpc ,dL=dLS=4kpc

E=4GMdLS

c2dLdS

=5×10−9radians=10−3arcsec

This angle is too small to measure directly even with HST 



What happens if L is not stationary?
If we are observing a star as the lens L passes across
out line-of-sight the star brightens when the 
alignment is within 

E
 and then fades as the 

alignment is lost. 



● Strong efect for <
E
. Sources can be magnifed my a 

factor of ~10 (2.5 mag) or more.

● Because the alignment must be so precise this is a very 
rare event, P<10-6.

● Now routinely observed toward the Galactic bulge and 
the Magellanic clouds.



Motion under Gravity

Newtons law of gravity tells us that two masses attract
each other with a force

d
dt

mv =−GmM
r 3 r

If we have a collection of masses acting on a mass 
m


 the force is

d
dt

mv=−∑


GmM 

∣x−x∣
3
x−x ,≠



x =−∑


Gm

∣x−x∣
, for x≠x

d
dt

mv =−m∇x ,

with

Is the gravitational potential. If we can approximate
the discrete stellar distribution with a continuous
distribution .

x =−∫ Gx '
∣x−x '∣

d3x '



So the force per unit mass is 

F x =−∇x =∫G x ' x−x '

∣x−x∣3
d3x '

∇ 2x =−∇2∫ Gx '
∣x−x '∣

d3x '

=4Gx 

To get the diferential form we start with the defnition
of  and applying ∇2 to both sides

we get Poisson's equation.



In the absence of external forces a star will conserve
energy along its orbit

v⋅ d
dt

mv =−mv⋅∇x ,

v⋅ d
dt

mv mv⋅∇x =0

But since 
d
dt

=v⋅∇x

d
dt

[m
2
v2mx ]=0

This is just the     KE    +     PE



As a body moves far from the mass then

x 0

So to escape from the gravitational pull a star must have
a velocity greater than

v22 x

The escape velocity is set so that v at infnity is 0 so

vesc=−2x 



In addition a stars angular momentum changes 
according to

dL
dt

=x×m d v
dt

=−m x×∇



Virial Theorem

2 〈KE〉〈PE 〉=0

2 〈KE 〉〈PE 〉∑

F ×x=0

Isolated system

In General 

Used to estimate masses
Determine stability
Star formation ...



Scattering and 2 Body 
Encounters

r
s

v
∗

For a strong encounter

GmM
r

mv2

2

Solving for r

rr s≡
2Gm
v2

For m=0.5 M
sun

, v = 30 km/s then r
s
 = 1au



How frequently can we expect such an encounter?
To answer this we must look at the volume of space
that the star sweeps out in a time t.

Vol=r s
2vt

What is the time before the 1st encounter is the star is
moving through a galaxy where the stellar density is n?

nr s
2v t=1

t s=
v3

4nG2m2=4×1012 v
10km /s


3

 m
Msun


−2

 n
1pc−3 

−1

yr



t s=4×1012 v
10km/ s


3

 m
M sun


−2

 n
1pc−3 

−1

yr

For the solar neighborhood n≈0.1 pc-3 and v ~ 30 km/s
so that t

s
 ~ 1015 yrs. Since the age of the universe is 

only 1.3x1010 yrs this isn't a real worry for the sun. 

What is the density required to have at least one 
strong encounter in the age of the universe?

    n≈few x 105 pc-3 

we see these densities in dense globular clusters and 
in the cores of galaxies. 



Weak Encounters

What keeps spiral
galaxies disk-like?



As we discussed last time

Now we know the force on the object m as it passes
M

m

F= GmMb

b2v 2 t 22
=M dv

dt
If we integrate this
over the time of the 
encounter

V= 1
M ∫ F dt=

2Gm
bv



For a weak encounter b >> r
s
, the strong encounter 

radius. 

That is for one weak encounter but as the star orbits
the galaxy there will be many of the encounter so what
is the cumulative efect?
We need to add each V in quadrature e.g.
<V>  = (v

1
2 + v

2
2
 
+ v

3
2

 
+ v

4
2

 
+ ...)1/2

and instead of summing we'll integrate 

〈V 2〉=∫
bmin

bmax

n v t  2Gm
bv


2

2b db=
8G2m2n t

v
ln 
bmax
bmin



Solve this for t

t relax=
v3

8G 2m2n ln 
=

t s
2 ln 



t relax=
2×109

ln 
 v
10 km/ s


3

 m
M sun


−2

 n
103 pc−3


−1

yrs

We can write t
relax

 in terms of more friendly units

The only tricky bit is what is ?

Near the sun b
min

≈300pc  b
max≈

3x104 pc

so ln is ln(100)= 4.61

Near the sun t
relax

≈1013 yrs so the sun acts

as if it is alone in the galaxy. 

What about a globular cluster?



T
relax

≈0.5 x1010 yrs

so we have to be
aware of the 
encounters when
calculating orbits



We've talked about two types of relaxation processes
but both take a long time, a signifcant fraction of the
age of the universe. So how did objects (elliptical 
galaxies and globular clusters get to be so smooth?

Violent relaxation!

During the early phases of collapse densities can 
rise to large values and many strong encounters can 
happen in a short time.





Efects of strong encounters

● Two outcomes
– Can form a binary star system
– Kick one of the stars out of the system

● This leads to 
– Core collapse 
– Blue Stragglers 

● Two stars coalesce into a single star too 
bright, too blue, and too massive to be on the 
MS 



● Millisecond pulsars
– One star in a binary is a neutron star and 

mass transfer from the normal star spins 
up the neutron star

● Evaporation
– Continuing encounters kick low mass 

stars out of the cluster
● Implies mass segregation – more massive stars 

should be in the center

● Data shows that all of these efects are 
present in GC's




