Stellar Dynamics & Structure of Galaxies handout #2

Cluster modelling

Just as a self-gravitating collection of objects.

Collisions

Do we have to worry about collisions?

Globular clusters look densest, so obtain a rough estimate of collision timescale
for them.

po ~ 8 x 103 Mg, pc3.
= ng ~ 10* pc? is the star number density.

We have o, ~ 7 km s~! as the typical 1D speed of a star, so the 3D speed is

~V3xao, (= Jo2+o2+02) ~10 km s~

Since M, x R, (see Fluids, or Stars, course notes), have R, ~ 0.8Rg.

For a collision, need the volume m(2R,)?0ton to contain one star, i.e.

no = 1/ (7(2R.)*0tecn ) (1)

or

teon = 1/ (47?Rfan0) (2)

Putting in the numbers gives t,on ~ 5 x 10%2 s ~ 2 x 10 yr.

So direct collisions between stars are rare, but if you have ~ 10° stars then
there is a collision every 2 x 10° years, so they do happen.
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So, for now, ignore collisions, and we are left with stars orbiting in the
potential from all the other stars in the system.

Model requirements

Have a gravitational potential well ®(r), approximately smooth if the number
of particles >> 1. Conventionally take ®(c0) = 0.

Stars orbit in the potential well, with time per orbit (for a globular cluster)
~ 2Ry /o ~ 10° years << age.

Stars give rise to ®(r) by their mass, so for this potential in a steady state
could average each star over its orbit to get p(r).

The key problem is therefore self-consistently building a model which fills in
the terms:

®(r) — stellar orbits — p(r) — ®(r) (3)

Note that in most observed cases we only have Ujine of sight (R), S0 it is even
harder to model real systems.

Self-consistent = orbits & stellar mass give p, which leads to ®, which sup-
ports the orbits used to construct p.

Basics

Use:
Newtons laws of motion

Newtonian gravity



lis << e¢=3x

[General Relativity not needed, since v ~ 10 — 10® km s~
10° km s™! and %8 ~ 2 x 107 (globular cluster) << 1.]
The gravitational force per unit mass acting on a body due to a mass M at
the origin is

f———f=——r (4)

V(l) = fg(i)% (+0 x 6+ 0 x )

r or \r-r
1 1 \2
- L (—) or .
2 \r.r
1,
= 5t
(5)
So
f=-Vo (6)
where ® is a scalar,
M
=a()=-" g
r

Hence the potential due to a point mass M at r =ry is

GM

r— 1

O(r) = —



Orbits

Particle of constant mass m at position r subject to a force F. Newton’s law:

d

1.e.
mr =F

If F is due to a gravitational potential ®(r), then
F=mf=-mVo

The angular momentum about the origin is H = ra(mr).Then

i)+ mini
dt = ralmr mrar
I'/\F
= G

where G is the torque about the origin.

The kinetic energy

1
T=—-mr-r
2
dr
v mr-r=F.r
If F = —mV®, then
dT
E = —mr- V(I)(I‘)
But if ® is independent of ¢, the rate of change of ® along an orbit is
d
@tb(r) =Vo-r)
(from the chain rule).
Hence IT g
o
i~ ")

d /1. .
jma (51"1""@(1‘)) =0
1

is constant for a given orbit.

(9)

(10)

(11)

(12)



Orbits in spherical potentials

®(r) = o(|r|) = ®(r), so f = —V& = —p92
The orbital angular momentum H = mrar, and
dH
— =ramf = —m—rar = 0. 20
at T T (20)
So the angular momentum per unit mass h = H/m = ral is a constant
vector, and is perpendicular to r and r
= the particle stays in a plane through the origin which is perpendicular to
h.
[If you want this in more detail - r L h, r + or = r + rdt L h since both r
and r L h, so particle remains in the plane.]
Thus the problem becomes a two-dimensional one to calculate the orbit use
2-D cylindrical coordinates (R, ¢,z) at z = 0, or spherical polars (7,0, ¢)
with § = 7.

So, in 2D, use (R, ¢) and (r, ¢) interchangeably..

Equation of motion in two dimensions

The equation of motion in two dimensions can be written in radial angular
terms, using r = 1t = ré, + 0&,, so r =(r,0).
We know that

d. .
a3 = Pey (21)
and
d . ;s
7180 = %% (22)



[To see this:

In time 6t €, — €, + d¢p€,, and hence the first result above, and in the same
time interval e, — €, — d¢e,, which gives the second.|

Hence .
I =7€. + roe, (23)
[or i = v =(7,7¢)] and so
P o= 76 + g8+ i08y + rgey — rile,
: 1d .
. . 2N A L4 79 ~
= (F—r¢ )er+7"dt (7" ¢)e¢
1d :
R P O T
= a=[i—rd® = (%))
(24)

In general f =(f,, f,), and then f, =i — r¢?, where the second term is the
centrifugal force, since we are in a rotating frame, and the torque rf, =

4 (rzgz'ﬁ) (= raf).

In a spherical potential fs = 0, so r% is constant.

Path of the orbit

To determine the shape of the orbit we need to remove ¢ from the equations
and find r(¢). Tt is simplest to set w = 1/r, and then from r?¢ = h obtain

¢ = hu? (25)
Then ) 14 p
u u

T 5 2 4 hd¢ (26)



and

i = —h% h = —h%Q%. (27)
So the radial equation of motion
i —rg? =
becomes P 1,
—huﬁ—ahu:fT (28)
2
:%—l—u:—hfzﬁ (29)

Since f, is just a function of r (or u) this is an equation for u(¢), i.e. r(¢) -
the path of the orbit. Note that it does not give r(t), or ¢(t) - you need one
of the other equations for those.

If we take f, = =94 = —GMu?, then

d*u 9
(which is something you will have seen in the Relativity course).

The solution to this equation is

é =/lu=1+ecos(¢ — ¢o) (31)

which you can verify simply by putting it in the differential equation. Then

_ecos(gb— ®0) n 1+ecos(p—¢o) GM
12 l K2

so £ = h?/GM and e and ¢, are constants of integration.

Note that if e < 1 then 1/r is never zero, so r is bounded in the range

¢ ¢ . ol s .
e <r <i= Also, in all cases the orbit is symmetric about ¢ = ¢, so we

take ¢p = 0 as defining the reference line for the angle ¢. ¢ is the distance



from the origin for ¢ = £7 (with ¢ measured relative to ¢).

We can use different parameters. Knowing that the point of closest approach
(perihelion for a planet in orbit around the sun, periastron for something
about a star) is at £/(1 4+ e) when ¢ = 0 and the aphelion (or whatever) is
at £/(1 —e) when ¢ = 7, we can set the distance between these two points
(= major axis of the orbit)=2a. Then

14 L 14
l1+e 1-—ce¢

=2a=((1—e)+L(1+e)=2a(l—e*) (32)

= (=a(l—e?) (33)

= rp = a(l — e) is the perihelion distance from the gravitating mass at the
origin, and r, = a(1+e) is the aphelion distance. The distance of the sun from
the midpoint is ae, and the angular momentum h* = GM{ = GMa(l — €?).

We can transform to Cartesian (z,y) setting x = rcos ¢ + ae and y = rsin ¢
so the origin is at the midpoint of the major axis. Then fairly uninstructive
algebra gives the standard Cartesian equation for an ellipse

.TQ yQ
St =1 (34)

where b is the length of the minor axis, b* = a?(1 — €?).



Energy per unit mass

The energy per unit mass

1 1 1,., GM
E=Zt-t+ P(r) = 5# + 57%2 - (35)

This is constant along the orbit, so we can evaluate it anywhere convenient
- e.g. at perihelion where 7 = 0. Then ¢ = % and so

1GMa(1 — €%) GM
2 a2(1—¢? a(l—e¢)
 GM 1 /1+e 1
o [5(1—e>_1—e]
GM

2

E =

(36)
This is < 0 for a bound orbit, and is depends only on the semi-major axis a
(and not e).
Kepler’s Laws

... deduced from observations, and explained by Newtonian theory of gravity.
1 Orbits are ellipses with the sun at a focus.

2 Planets sweep out equal areas in equal time

SA = %ﬁ(s(p = %r(r&b)] (37)
= = §7~ o= 5= constant (38)

= Kepler’s second law is a consequence of a central force, since this is why
h is a constant.

3 (Period)? o< (size of orbit)?



In one period T, the area swept out is A = %hT = (f0°° %dt)
But A = area of ellipse = mab = ma*v/1 — ¢2

[
A:/D%dgzﬁ/orrdr
27

1
= —r2dg
0

_Epmde

~2Jo (14 ecosg)?
Have

/7r dx T a
0 (a+bcosx)? a2 —b%\a2— 12

SO

2
A=ob 7 !
21—62\/1—62

Since ¢ = a(1 — €?) this implies
A=7a*V1 — e2

and since b = av/1 — €2,
A =mab

]

Therefore

T —
h
_ 2ma*V1—e?
GMa(l —e?)
[since h? = GMa(l —é?) ]
a3
T = 2wy ——
VoM
=T x o
(39)
where in this case M is the mass of the sun.
Note: Since E = —GQ—M, the period T = 27GM
@ (—2E)2
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Unbound orbits

f =1+ ecos¢ with e > 1.

If e > 1 then 1+ ecos ¢ = 0 has solutions ¢, where r = oco.
— COS P = —1/€

Then —¢ < ¢ < ¢oo, and, since cos P is negative, § < Qoo < 7.

The orbit is a hyperbola. If e = 1 then the particle just gets to infinity at
¢ = +m - it is a parabola.

Energies for these unbound orbits:

asr—>ooE—>%7'“2.

Recall

l
—=1+ecos¢
r
%ofthis:>
—r—zf:—esin¢$
and since h = r2¢
. eh | y
7 = —sin
14

Asr —oocosgp — —1/e

1 1 e2h? 1 GM
Bt =2 (1-5) = e -1

T2 Tae @)= e
(recalling that h? = GM{) Thus E > 0 if e > 1 and for parabolic orbits
(e=1) E=0.
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Escape velocity

We have seen that in a fixed potential ®(r) a particle has constant energy
E = 11?4+ ®(r) along an orbit. If we adopt the usual convention and take
®(r) — 0 as |r| — oo, then if at some point r( the particle has velocity vy
such that

1
§v3 + ®(rg) > 0

then it is able to reach infinity. So at each point ry we can define an escape
velocity ves. such that

Vese = —2CI)<I'0)

The escape velocity from the sun

<QGM@) 2
Vese =
To

_1

— 42.2 (Q) * km s
a.u.

_oum

Note: The circular velocity ve. is such that —rq52 = —=3

. GM, 2
’l"¢ = Vcirc = © = 29.8 <ro> ’ km S_1

To a.u.

(=27 a.u./yr).

Vese = V2Ucire for a point mass source of the gravitational potential.
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