
Stellar Dynamics & Structure of Galaxies handout #2

Cluster modelling

Just as a self-gravitating collection of objects.

Collisions

Do we have to worry about collisions?

Globular clusters look densest, so obtain a rough estimate of collision timescale
for them.

ρ0 ∼ 8 × 103 M⊙ pc−3.

M∗ ∼ 0.8 M⊙.

⇒ n0 ∼ 104 pc−3 is the star number density.

We have σr ∼ 7 km s−1 as the typical 1D speed of a star, so the 3D speed is
∼

√
3 × σr (=

√

σ2
x + σ2

y + σ2
z) ∼ 10 km s−1.

Since M∗ ∝ R∗ (see Fluids, or Stars, course notes), have R∗ ∼ 0.8R⊙.

For a collision, need the volume π(2R∗)
2σtcoll to contain one star, i.e.

n0 = 1/
(

π(2R∗)
2σtcoll

)

(1)

or
tcoll = 1/

(

4πR2
∗
σn0

)

(2)

Putting in the numbers gives tcoll ∼ 5 × 1022 s ∼ 2 × 1015 yr.

So direct collisions between stars are rare, but if you have ∼ 106 stars then
there is a collision every 2 × 109 years, so they do happen.
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So, for now, ignore collisions, and we are left with stars orbiting in the
potential from all the other stars in the system.

Model requirements

Have a gravitational potential well Φ(r), approximately smooth if the number
of particles >> 1. Conventionally take Φ(∞) = 0.

Stars orbit in the potential well, with time per orbit (for a globular cluster)
∼ 2Rh/σ ∼ 106 years << age.

Stars give rise to Φ(r) by their mass, so for this potential in a steady state
could average each star over its orbit to get ρ(r).

The key problem is therefore self-consistently building a model which fills in
the terms:

Φ(r) → stellar orbits → ρ(r) → Φ(r) (3)

Note that in most observed cases we only have vline of sight(R), so it is even
harder to model real systems.

Self-consistent = orbits & stellar mass give ρ, which leads to Φ, which sup-
ports the orbits used to construct ρ.

Basics

Use:

Newtons laws of motion

Newtonian gravity
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[General Relativity not needed, since v̄ ∼ 10 − 103 km s−1 is << c = 3 ×
105 km s−1 and GM

rc2
∼ 2 × 10−9 (globular cluster) << 1.]

The gravitational force per unit mass acting on a body due to a mass M at
the origin is

f = −GM

r2
r̂ = −GM

r3
r (4)

We can write this in terms of a potential Φ, using

∇
(

1

r

)

= r̂
∂

∂r

(

1

r . r

)

1

2

(+0 × θ̂ + 0 × φ̂)

= −1

2
r̂

(

1

r . r

)

3

2

2r . r̂

= − 1

r2
r̂

(5)

So
f = −∇Φ (6)

where Φ is a scalar,

Φ = Φ(r) = −GM

r
(7)

Hence the potential due to a point mass M at r = r1 is

Φ(r) = − GM

|r − r1|
(8)
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Orbits

Particle of constant mass m at position r subject to a force F. Newton’s law:

d

dt
(mṙ) = F (9)

i.e.
mr̈ = F (10)

If F is due to a gravitational potential Φ(r), then

F = mf = −m∇Φ (11)

The angular momentum about the origin is H = r∧(mṙ).Then

dH

dt
= r∧(mr̈) + mṙ∧ṙ

= r∧F

≡ G

(12)

where G is the torque about the origin.

The kinetic energy

T =
1

2
mṙ . ṙ (13)

dT

dt
= mṙ . r̈ = F . ṙ (14)

If F = −m∇Φ, then
dT

dt
= −mṙ .∇Φ(r) (15)

But if Φ is independent of t, the rate of change of Φ along an orbit is

d

dt
Φ(r) = ∇Φ . ṙ) (16)

(from the chain rule).

Hence
dT

dt
= −m

d

dt
Φ(r) (17)

⇒ m
d

dt

(

1

2
ṙ . ṙ + Φ(r)

)

= 0 (18)

⇒ E =
1

2
ṙ . ṙ + Φ(r) (19)

is constant for a given orbit.
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Orbits in spherical potentials

Φ(r) = Φ(|r|) = Φ(r), so f = −∇Φ = −r̂dΦ
dr

.

The orbital angular momentum H = mr∧ṙ, and

dH

dt
= r∧mf = −m

dΦ

dr
r∧r̂ = 0. (20)

So the angular momentum per unit mass h = H/m = r∧ṙ is a constant
vector, and is perpendicular to r and ṙ

⇒ the particle stays in a plane through the origin which is perpendicular to
h.

[If you want this in more detail - r ⊥ h, r + δr = r + ṙδt ⊥ h since both r

and ṙ ⊥ h, so particle remains in the plane.]

Thus the problem becomes a two-dimensional one to calculate the orbit use
2-D cylindrical coordinates (R, φ, z) at z = 0, or spherical polars (r, θ, φ)
with θ = π

2
.

So, in 2D, use (R, φ) and (r, φ) interchangeably..

Equation of motion in two dimensions

The equation of motion in two dimensions can be written in radial angular
terms, using r = rr̂ = rêr + 0êφ, so r =(r, 0).

We know that
d

dt
êr = φ̇êφ (21)

and
d

dt
êφ = −φ̇êr (22)
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[To see this:

In time δt êr → êr + δφêφ, and hence the first result above, and in the same
time interval êφ → êφ − δφêr, which gives the second.]

Hence
ṙ = ṙêr + rφ̇êφ (23)

[or ṙ = v =(ṙ, rφ̇)] and so

r̈ = r̈êr + ṙφ̇êφ + ṙφ̇êφ + rφ̈êφ − rφ̇2êr

= (r̈ − rφ̇2)êr +
1

r

d

dt

(

r2φ̇
)

êφ

= a = [r̈ − rφ̇2,
1

r

d

dt

(

r2φ̇
)

]

(24)

In general f =(fr, fφ), and then fr = r̈ − rφ̇2, where the second term is the
centrifugal force, since we are in a rotating frame, and the torque rfφ =
d
dt

(

r2φ̇
)

(= r∧f).

In a spherical potential fφ = 0, so r2φ̇ is constant.

Path of the orbit

To determine the shape of the orbit we need to remove t from the equations
and find r(φ). It is simplest to set u = 1/r, and then from r2φ̇ = h obtain

φ̇ = hu2 (25)

Then

ṙ = − 1

u2
u̇ = − 1

u2

du

dφ
φ̇ = −h

du

dφ
(26)
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and

r̈ = −h
d2u

dφ2
φ̇ = −h2u2 d2u

dφ2
. (27)

So the radial equation of motion

r̈ − rφ̇2 = fr

becomes

−h2u2 d2u

dφ2
− 1

u
h2u4 = fr (28)

⇒ d2u

dφ2
+ u = − fr

h2u2
(29)

Since fr is just a function of r (or u) this is an equation for u(φ), i.e. r(φ) -
the path of the orbit. Note that it does not give r(t), or φ(t) - you need one
of the other equations for those.

If we take fr = −GM
r2 = −GMu2, then

d2u

dφ2
+ u = GM/h2 (30)

(which is something you will have seen in the Relativity course).

The solution to this equation is

ℓ

r
= ℓu = 1 + e cos(φ − φ0) (31)

which you can verify simply by putting it in the differential equation. Then

−e cos(φ − φ0)

ℓ
+

1 + e cos(φ − φ0)

ℓ
=

GM

h2

so ℓ = h2/GM and e and φ0 are constants of integration.

Note that if e < 1 then 1/r is never zero, so r is bounded in the range
ℓ

1+e
< r < ℓ

1−e
. Also, in all cases the orbit is symmetric about φ = φ0, so we

take φ0 = 0 as defining the reference line for the angle φ. ℓ is the distance
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from the origin for φ = ±π
2

(with φ measured relative to φ0).

We can use different parameters. Knowing that the point of closest approach
(perihelion for a planet in orbit around the sun, periastron for something
about a star) is at ℓ/(1 + e) when φ = 0 and the aphelion (or whatever) is
at ℓ/(1 − e) when φ = π, we can set the distance between these two points
(= major axis of the orbit)=2a. Then

ℓ

1 + e
+

ℓ

1 − e
= 2a ⇒ ℓ(1 − e) + ℓ(1 + e) = 2a(1 − e2) (32)

⇒ ℓ = a(1 − e2) (33)

⇒ rP = a(1 − e) is the perihelion distance from the gravitating mass at the
origin, and ra = a(1+e) is the aphelion distance. The distance of the sun from
the midpoint is ae, and the angular momentum h2 = GMℓ = GMa(1 − e2).

We can transform to Cartesian (x, y) setting x = r cos φ + ae and y = r sin φ
so the origin is at the midpoint of the major axis. Then fairly uninstructive
algebra gives the standard Cartesian equation for an ellipse

x2

a2
+

y2

b2
= 1 (34)

where b is the length of the minor axis, b2 = a2(1 − e2).
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Energy per unit mass

The energy per unit mass

E =
1

2
ṙ . ṙ + Φ(r) =

1

2
ṙ2 +

1

2
r2φ̇2 − GM

r
(35)

This is constant along the orbit, so we can evaluate it anywhere convenient
- e.g. at perihelion where ṙ = 0. Then φ̇ = h

r2

P

and so

E =
1

2

GMa(1 − e2)

a2(1 − e)2
− GM

a(1 − e)

=
GM

a

[

1

2

(

1 + e

1 − e

)

− 1

1 − e

]

= −GM

2a
(36)

This is < 0 for a bound orbit, and is depends only on the semi-major axis a
(and not e).

Kepler’s Laws

... deduced from observations, and explained by Newtonian theory of gravity.

1 Orbits are ellipses with the sun at a focus.

2 Planets sweep out equal areas in equal time

δA =
1

2
r2δφ [=

1

2
r(rδφ)] (37)

dA

dt
=

1

2
r2φ̇ =

h

2
= constant (38)

⇒ Kepler’s second law is a consequence of a central force, since this is why
h is a constant.

3 (Period)2 ∝ (size of orbit)3
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In one period T , the area swept out is A = 1
2
hT =

(

∫

∞

0
dA
dt

dt
)

But A = area of ellipse = πab = πa2
√

1 − e2

[

A =
∫ 2π

0
dφ

∫ r

0
rdr

=
∫ 2π

0

1

2
r2dφ

=
ℓ2

2

∫ 2π

0

dφ

(1 + e cos φ)2

Have
∫ π

0

dx

(a + b cosx)2
=

π

a2 − b2

a√
a2 − b2

so

A = 2
ℓ2

2

π

1 − e2

1√
1 − e2

Since ℓ = a(1 − e2) this implies

A = πa2
√

1 − e2

and since b = a
√

1 − e2,
A = πab

]

Therefore

T =
2πa2

√
1 − e2

h

=
2πa2

√
1 − e2

√

GMa(1 − e2)

[since h2 = GMa(1 − e2) ]

T = 2π

√

a3

GM

⇒ T 2 ∝ a3

(39)

where in this case M is the mass of the sun.

Note: Since E = −GM
2a

, the period T = 2πGM

(−2E)
3

2

.
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Unbound orbits

ℓ
r

= 1 + e cos φ with e ≥ 1.

If e > 1 then 1 + e cos φ = 0 has solutions φ∞ where r = ∞.

→ cosφ∞ = −1/e

Then −φ∞ ≤ φ ≤ φ∞, and, since cosφ∞ is negative, π
2

< φ∞ < π.

The orbit is a hyperbola. If e = 1 then the particle just gets to infinity at
φ = ±π - it is a parabola.

Energies for these unbound orbits:

E =
1

2
ṙ2 +

1

2

h2

r2
− GM

r

as r → ∞ E → 1
2
ṙ2.

Recall
ℓ

r
= 1 + e cos φ

d
dt

of this ⇒
− ℓ

r2
ṙ = −e sin φ φ̇

and since h = r2φ̇

ṙ =
eh

ℓ
sin φ

As r → ∞ cosφ → −1/e

E → 1

2
ṙ2 =

1

2

e2h2

ℓ2

(

1 − 1

e2

)

=
GM

2ℓ
(e2 − 1)

(recalling that h2 = GMℓ) Thus E > 0 if e > 1 and for parabolic orbits
(e = 1) E = 0.
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Escape velocity

We have seen that in a fixed potential Φ(r) a particle has constant energy
E = 1

2
ṙ2 + Φ(r) along an orbit. If we adopt the usual convention and take

Φ(r) → 0 as |r| → ∞, then if at some point r0 the particle has velocity v0

such that
1

2
v2

0 + Φ(r0) > 0

then it is able to reach infinity. So at each point r0 we can define an escape
velocity vesc such that

vesc =
√

−2Φ(r0)

The escape velocity from the sun

vesc =
(

2GM⊙

r0

)

1

2

= 42.2
(

r0

a.u.

)−
1

2

km s−1

Note: The circular velocity vcirc is such that −rφ̇2 = −GM
r2

rφ̇ = vcirc =

√

GM⊙

r0

= 29.8
(

r0

a.u.

)−
1

2

km s−1

(= 2π a.u./yr).

vesc =
√

2vcirc for a point mass source of the gravitational potential.
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