Stellar Dynamics & Structure of Galaxies handout #9

Potential due to thin disk

A

—=>T<—

H<<R
Could use above and write down potential as sum over rings.
But method does not work at r = a.
Instead use cylindrical polar, (R, ¢, z), coordinates
Expect ® = ®(R, z) and ®(R, z) = ®(R, —z) by symmetry.
Outside disk V2® = 0.

ROR\ OR 022

We solve this by separation of variables, letting

1 d (. dJ(R) e B
L Ldfpdy 18z,
JRAR\"Yar) =~ Zaz T~ " W
———

function of R function of z

2z
CL k7=
= - 0

so  Z = Aexp(kz)+ Bexp(—kz)

1 d [ dI\
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We would quite like (R, 00) and ®(R, —o0) to be zero, so
Z(z) = Aexp(—klz])

is the appropriate solution for Z(z).

The R equation (9-2) is the defining equation for a Bessel function. These
are the analogues of sines and cosines now for cylindrical as opposed to linear
problems (e.g. drum beats).

d2
So while d—‘g +d*y =0 has solutions sin(kz) , cos(kz)9-3)
z
. 1d dy 9 .
similarly S 7 \57s + k“y =0 has solutions Jy(ks) ,Yy(ks) (9-4)
s

which you can look up in e.g. Abramowitz & Stegun “Handbook of Mathe-
matical Functions”.

Examples are given on the next page.
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Note that as + — 0 Jy(z) — 1 and Yy(z) — —oc.

More generally the equation

1d ([ dy LAY
sds (Sds> + (k B 82)y_0

has solutions J, (ks), Y, (ks), so we get while a whole family of Bessel functions
characterized by the index v.

Also there are “modified” Bessel functions where k — ik

dQZ/ 2
a2 K=

has solutions sin(ikz) ,cos(ikz) or exp(kz)

k2 bks)
ekz Kolks)
z )
1
Similarly _di (s%) — Ky =0— Io(ks)
sds s

KQ(]CS)

1 2
and 1d (Sd_y> _ <k:2+ V_2> y=0— 1I,(ks),K,(ks)
s

see Abramowitz 4+ Stegun “Handbook of Mathematical functions”

And we can take this even further. By analogy with Fourier transforms where
sin, cos — form the basis, we have J, Y — Hankel transforms.

Given a function g(r), then the Hankel transform of ¢ is

G(k) = /O  g(r) g (kr)rdr
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and the inverse transform is:
g(r) = [ Gk, (dr)kdk
0

{ look these up in books of Hankel transforms! }

Returning to the axisymmetric plane distribution, we have
(9-1) = Z(2) = exp(—kl2])
(9-2) = J(R) = Jo(kr)

choose J to get @ finite at R =0

Let £ > 0 then

= O(R,Z)= Ce*Jy(kR) z>0

Ce** Jo(kR) 2z <0

This is true V k > 0, but a specific k£ for each ®y.
General potential — >, &

= ®(R, 2) = /0 T Fk)e M g (kR) dk (9-5)

Here f(k) is a weighting function, corresponding to the C' values in the sum.
So what we need to do for a particular mass distribution is find f(k).

If we are going to relate it to a mass distribution, the next thing we should
do is look at the z = 0 plane, i.e. the region we have neglected so far since
we have taken V2® = 0 and so considered regions outside the plane.

Note that @ is continuous across z = 0 but V& is not due to |z| depen-
dence.That is where the mass is, so that is not a surprise.

= V2®;, = 0 except at z = 0 and ®,, — 0 as z, R — 0o = satisfies conditions
for potential from an isolated mass distribution. Still need to link with p (or
Y(R)) in the plane.
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Use Gauss’ Theorem (= Poisson’s equation plus divergence theorem) to de-
termine Y in the z = 0 plane.

Over the cylinder

///4ﬂGpdV=///v2¢>dv _ ///V.(vcp)dv
= / VO - AdS

Consider the limit in which the cylinder height — 0. Then if A is the area
of an end of the cylinder

LHS = 4nGXA

s = (5], [ ) <2
82 2=0-+ 82 z2=0—

oP 0+
Equating these = l—] = 47GX(R)
0z |,
LHS = — / Tk (R)e M Ty (kR)dk — / TR (k) 0 Jo(kR)dk
0 0

- _/OOO k:f(k)Jo(kR)dk—/Ooo kf(k)Jo(kR)dk
_ _2/000 kf (k) Jo(kR)dk

~ %(R) = —#/Ooof(k)Jo(kR)kdk
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Hence determine f(k) [and hence ®] from inverse Hankel transform
— —21G [ S(R)Jo(kR)rdR

Thus the process for dtermining ® from p in this case is ¥ — f — ®.

dJo(z)

o
d dr

Note: For determining the circular velocity need §z, whch becomes
and for Bessel function Jy have 2 Jy(z) = —J;(z) [Example].

This has been a bit longwinded, but the steps are clear. They are:

Summary of derivation of ® for thin axisymmetric disk
1. V2® = 0 outside disk. Solve by separation of variables.
2. Solutions of form ®(R, z) = Ce *# Jy(kR) V k > 0

3. &, — 0 as R, z — oo and satisfies V2® = 0
= is potential of an isolated density distribution

4. General ® can be written as
O(R,2) = [ @u(R,2)f(k)dk
0

where f(k) is an appropriate weight function.

5. Use Gauss’ theorem to determine
1 e’}

B(R) = —5 | J(R)T(kR)kdk

6. Hence
e / R)Jo(kR)RAR

So given 3, use item (6) to determine f(k), and then (5) to obtain ®.

The circular velocity in the plane of a plane distribution of matter is given
by

vo(R) _ 0%

R 0OR

z=0
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and we have

d d
p=kR <o Jo(kR) = ko Jox = —kJi(kR)
Then since we have equation (9-5) [®(R, z) = [5° f(k)e " Jo(kR)dk)] then
2 oo
“C](%R) - / FR) L (kR)kdk
0

Examples
(a) Mestel disk

A Mestel disk has the surface density distribution Y(R) = 2ol

R
Y
R
Thus
R R
M(< R) = / S (RVRAR = 2rReS, / dR'
0 0
= QWEQR()R
— ooas R — o
fk) = —27G%oR, / Jo(kR)dR
0
B _27TGZOR0
- k

From Gradshteyn and Ryzkik 6.511.1

o0 1 Re(v) > -1
J,(bx)dxr = —
/0 (boyde =7 2
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= O(R,2) = —21G¥oRy /Ooe"”zwdk
0

and MY 9rGyR, /Oojl(kR)dk
0

= 0v3(R) = 2rGYyRy = const

Note that GM(R)
2
R) =
(R = T
exactly in this case even though distribution is a disk, not spherical.
More generally, find v? = GMT@ to within 10% [reasonable accuracy] for

most smooth ¥ distributions. (see figure on next page)

Conclude that measurement of v.(R) is a good measure of mass inside R.
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Exponential Disk

Here
Y(R) =%y exp[—R/Rd] (9-6)

This has finite mass

M = /0027@0 oxp [~ R/Rd] RdR
0

= QWZORU%/ e “xdr
0
=1
= 27T20Rl21

Then

F(k) = —27G%y [ e RIFA ] (LR)RAR
0

(%

l Gradshteyn + Ryzhik : /0 e Jo (Bx) xdr = m

[ Actually they have something (6.632.2) which requires a little work:
20(26)T(v + 3)
V(a2 + 5213

and you need to put in v =0, I'(3/2) = /7/2.
Then put « = 1/Ry and § = k.]

/OOO J,(Bx)r"dr =

2rGY R?
f(k) = - - 2d3/2
[1+ (kRq)?]
Hence k]
O(R,z) = —2WG20R3/ Jo(kR)e s
(14 (kRy)*)
Use

[ i ()
0o @ +a2y2 2 \QW) Rz (9%
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You can do this with help from Gradshteyn 4+ Ryzhik again, using (6.552.1)

o J,,(:L“y) dx 1 1
0 Va2 + a? ,,/2(2ay) ,,/2(2ay)

for Re(a) >0,y >0, Re(v) > —1,
and [((z) = I,(2), K|(z) = —K1(2)

% of this gives

© J(xy) dv _y 1 , 1 y., 1 1
—a/o 2t o Lo (Gay) Ky p(Say) + S p(5ay) Ky pa(5ay)

soforv =0

© Jo(vy) dv  y 1 1 y. 1 1
_a/o JERpr _510(5%)-’(1(5@3/) + 511(5%)}(0(5@3/)
o T (xy) d 1 1 ! !
© J(xy)de y 7, 1 1 1 1
[ = o[BG KaGaw) ~ hGan) KolGay)]
Then with x = k, y = R and a = 1/ R, this becomes
~ J,(kR)dk R [ R R R R ]
= K () K
| T G = 3 o)) — ) Kol

Also you find for the circular velocity (with y = R/2Ry)

®
Vg = R% = AXRay*[lo Ko — I, K]

which is helpfully left as an example...
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