
Stellar Dynamics & Structure of Galaxies handout #9

Potential due to thin disk

H << R

Could use above and write down potential as sum over rings.

But method does not work at r = a.

Instead use cylindrical polar, (R, φ, z), coordinates

Expect Φ ≡ Φ(R, z) and Φ(R, z) = Φ(R,−z) by symmetry.

Outside disk ∇2Φ = 0.

⇒ 1

R

∂

∂R

(

R
∂Φ

∂R

)

+
∂2Φ

∂z2
= 0

We solve this by separation of variables, letting

Φ(R, z) = J(R)Z(z)

⇒ Z(z)
1

R

d

dR

(

R
dJ(R)

dR

)

+ J(R)
d2

dz2
Z(z) = 0

⇒ 1

JR

d

dR

(

R
dJ

dR

)

︸ ︷︷ ︸

function of R

= − 1

Z

d2Z

dz2
︸ ︷︷ ︸

function of z

= −k2 , say

⇒ d2Z

dz2
− k2Z = 0 (9-1)

so Z = A exp(kz) + B exp(−kz)

and
1

R

d

dR

(

R
dJ

dR

)

+ k2J(R) = 0 (9-2)
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We would quite like Φ(R,∞) and Φ(R,−∞) to be zero, so

Z(z) = A exp(−k|z|)

is the appropriate solution for Z(z).

The R equation (9-2) is the defining equation for a Bessel function. These
are the analogues of sines and cosines now for cylindrical as opposed to linear
problems (e.g. drum beats).

So while
d2y

dz2
+ d2y = 0 has solutions sin(kz) , cos(kz)(9-3)

similarly
1

s

d

ds

(

s
dy

ds

)

+ k2y = 0 has solutions J0(ks) , Y0(ks) (9-4)

which you can look up in e.g. Abramowitz & Stegun “Handbook of Mathe-
matical Functions”.

Examples are given on the next page.
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Note that as x → 0 J0(x) → 1 and Y0(x) → −∞.

More generally the equation

1

s

d

ds

(

s
dy

ds

)

+
(

k2 − ν

s2

)

y = 0

has solutions Jν(ks), Yν(ks), so we get while a whole family of Bessel functions
characterized by the index ν.

Also there are “modified” Bessel functions where k → ik

d2y

dz2
− k2y = 0

has solutions sin(ikz) , cos(ikz) or exp(kz)

Similarly
1

s

d

ds

(

s
dy

ds

)

− k2y = 0 → I0(ks)

K0(ks)

and
1

s

d

ds

(

s
dy

ds

)

−
(

k2 +
ν2

s2

)

y = 0 → Iν(ks) ,Kν(ks)

see Abramowitz + Stegun “Handbook of Mathematical functions”

And we can take this even further. By analogy with Fourier transforms where
sin, cos → form the basis, we have J, Y → Hankel transforms.

Given a function g(r), then the Hankel transform of g is

g̃(k) =
∫ ∞

0
g(r)Jν(kr)rdr
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and the inverse transform is:

g(r) =
∫ ∞

0
g̃(k)Jν(dr)kdk

[

look these up in books of Hankel transforms!
]

Returning to the axisymmetric plane distribution, we have
(9-1) ⇒ Z(z) = exp(−k|z|)
(9-2) ⇒ J(R) = J0(kr)

choose J to get Φ finite at R = 0

Let k > 0 then

⇒ Φk(R,Z) = Ce−kzJ0(kR) z > 0

CekzJ0(kR) z < 0

This is true ∀ k > 0, but a specific k for each Φk.

General potential → ∑

k Φk

⇒ Φ(R, z) =
∫ ∞

0
f(k)e−k|z|J0(kR)dk (9-5)

Here f(k) is a weighting function, corresponding to the C values in the sum.
So what we need to do for a particular mass distribution is find f(k).

If we are going to relate it to a mass distribution, the next thing we should
do is look at the z = 0 plane, i.e. the region we have neglected so far since
we have taken ∇2Φ = 0 and so considered regions outside the plane.

Note that Φk is continuous across z = 0 but ∇Φk is not due to |z| depen-
dence.That is where the mass is, so that is not a surprise.

⇒ ∇2Φk = 0 except at z = 0 and Φk → 0 as z,R → ∞ ⇒ satisfies conditions
for potential from an isolated mass distribution. Still need to link with ρ (or
Σ(R)) in the plane.
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Use Gauss’ Theorem (≡ Poisson’s equation plus divergence theorem) to de-
termine Σ in the z = 0 plane.

Over the cylinder

∫ ∫ ∫

4πGρdV =
∫ ∫ ∫

∇2ΦdV =
∫ ∫ ∫

∇ . (∇Φ) dV

=
∫ ∫

∇Φ . n̂d2S

Consider the limit in which the cylinder height → 0. Then if A is the area
of an end of the cylinder

LHS = 4πGΣA

RHS =

([

∂Φ

∂z

]

z=0+

−
[

∂Φ

∂z

]

z=0−

)

× A

Equating these ⇒
[

∂Φ

∂z

]0+

0−

= 4πGΣ(R)

LHS = −
∫ ∞

0
kf(k)e−k0+J0(kR)dk −

∫ ∞

0
kf(k)z=0e−k0−J0(kR)dk

= −
∫ ∞

0
kf(k)J0(kR)dk −

∫ ∞

0
kf(k)J0(kR)dk

= −2
∫ ∞

0
kf(k)J0(kR)dk

⇒ Σ(R) = − 1

2πG

∫ ∞

0
f(k)J0(kR)kdk

51



Hence determine f(k) [and hence Φ] from inverse Hankel transform

f(k) = −2πG
∫ ∞

0
Σ(R)J0(kR)rdR

Thus the process for dtermining Φ from ρ in this case is Σ → f → Φ.

Note: For determining the circular velocity need ∂Φ
∂R

, whch becomes dJ0(x)
dx

,
and for Bessel function J0 have dJ

dx
J0(x) = −J1(x) [Example].

This has been a bit longwinded, but the steps are clear. They are:

Summary of derivation of Φ for thin axisymmetric disk

1. ∇2Φ = 0 outside disk. Solve by separation of variables.

2. Solutions of form Φk(R, z) = Ce−k|z|J0(kR) ∀ k > 0

3. Φk → 0 as R, z → ∞ and satisfies ∇2Φ = 0
⇒ is potential of an isolated density distribution

4. General Φ can be written as

Φ(R, z) =
∫ ∞

0
Φk(R, z)f(k)dk

where f(k) is an appropriate weight function.

5. Use Gauss’ theorem to determine

Σ(R) = − 1

2πG

∫ ∞

0
f(k)J0(kR)kdk

6. Hence
f(k) = −2πG

∫ ∞

0
Σ(R)J0(kR)RdR

So given Σ, use item (6) to determine f(k), and then (5) to obtain Φ.

The circular velocity in the plane of a plane distribution of matter is given
by

v2
C(R)

R
=

∂Φ

∂R

∣
∣
∣
∣
∣
z=0

52



and we have

x = kR
d

dR
J0(kR) = k

d

dx
J0x = −kJ1(kR)

Then since we have equation (9-5) [Φ(R, z) =
∫∞
0 f(k)e−k|z|J0(kR)dk] then

v2
C(R)

R
= −

∫ ∞

0
f(k)J1(kR)kdk

Examples

(a) Mestel disk

A Mestel disk has the surface density distribution Σ(R) = Σ0R0

R

Thus

M(< R) =
∫ R

0
2πΣ(R′)R′dR′ = 2πR0Σ0

∫ R

0
dR′

= 2πΣ0R0R

→ ∞ as R → ∞

f(k) = −2πGΣ0R0

∫ ∞

0
J0(kR)dR

= −2πGΣ0R0

k








From Gradshteyn and Ryzkik 6.511.1

∫ ∞

0
Jν(bx)dx =

1

b

Re(ν) > −1

b > 0







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⇒ Φ(R, z) = −2πGΣ0R0

∫ ∞

0
e−k|z|J0(kR)

k
dk

and
v2

c (R)

R
= 2πGΣ0R0

∫ ∞

0
J1(kR)dk

⇒ v2
c (R) = 2πGΣ0R0 = const

Note that

v2
c (R) =

GM(R)

R

exactly in this case even though distribution is a disk, not spherical.

More generally, find v2
c ≡ GM(R)

R
to within 10% [reasonable accuracy] for

most smooth Σ distributions. (see figure on next page)

Conclude that measurement of vc(R) is a good measure of mass inside R.
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Exponential Disk

Here
Σ(R) = Σ0 exp [−R/Rd] (9-6)

This has finite mass

M =
∫ ∞

0
2πΣ0 exp [−R/Rd]RdR

= 2πΣ0R
2
d

∫ ∞

0
e−xxdx

︸ ︷︷ ︸

=1

= 2πΣ0R
2
d

Then
f(k) = −2πGΣ0

∫ ∞

0
e−R/RdJ0(kR)RdR

[

Gradshteyn + Ryzhik :
∫ ∞

0
e−αxJ0 (βx) xdx =

α

[β2 + α2]3/2

]

[ Actually they have something (6.632.2) which requires a little work:

∫ ∞

0
Jν(βx)xν+1dx =

2α(2β)νΓ(ν + 3
2
)

√
π (α2 + β2)ν+ 3

2

and you need to put in ν = 0, Γ(3/2) =
√

π/2.

Then put α = 1/Rd and β = k.]

f(k) = − 2πGΣ0R
2
d

[1 + (kRd)2]3/2

Hence

Φ(R, z) = −2πGΣ0R
2
d

∫ ∞

0

J0(kR)e−k|z|

(

1 + (kRd)
2
)3/2

dk

Use
∫ ∞

0

Jν(xy)dx

(x2 + a2)1/2
= Iν/2

(
1

2
ay
)

Kν/2

(
1

2
ay
)

55



You can do this with help from Gradshteyn + Ryzhik again, using (6.552.1)

∫ ∞

0

Jν(xy) dx√
x2 + a2

= Iν/2(
1

2
ay)Kν/2(

1

2
ay)

for Re(a) > 0, y > 0, Re(ν) > −1,
and I ′

0(z) = I1(z), K ′
0(z) = −K1(z)

d
da

of this gives

−a
∫ ∞

0

Jν(xy) dx

x2 + a23/2
=

y

2
Iν/2(

1

2
ay)K ′

ν/2(
1

2
ay) +

y

2
I ′
ν/2(

1

2
ay)Kν/2(

1

2
ay)

so for ν = 0

−a
∫ ∞

0

J0(xy) dx

x2 + a23/2
= −y

2
I0(

1

2
ay)K1(

1

2
ay) +

y

2
I1(

1

2
ay)K0(

1

2
ay)

or
∫ ∞

0

Jν(xy) dx

x2 + a23/2
=

y

2a

[

I0(
1

2
ay)K1(

1

2
ay) − I1(

1

2
ay)K0(

1

2
ay)

]

Then with x = k, y = R and a = 1/Rd this becomes

∫ ∞

0

Jν(kR) dk

1 + (kRd)23/2
=

R

2R2
d

[

I0(
R

2Rd
)K1(

R

2Rd
) − I1(

R

2Rd
)K0(

R

2Rd
)
]

Also you find for the circular velocity (with y = R/2Rd)

v2
C = R

∂Φ

∂R
= 4πΣ0Rdy

2[I0K0 − I1K1]

which is helpfully left as an example...
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