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SUMMARY

The Jeans equations are used to study the galactic halo. Relations are derived
between the axial ratio g of the metal-poor halo, the axial ratio 4 of the dark halo, and
the local velocity ellipsoid of metal-poor halo stars. Comparison with observational
data implies that (i) neither models in which the principal axes of the velocity ellipsoid
align with cylindrical coordinate axes, nor models in which they align with spherical
coordinate axes can be ruled out by the presently available observational data; (ii) if
the principal axes of the velocity ellipsoid align with cylindrical coordinate axes, then
q<0.67; (iii) if the metal-poor halo and the dark halo have the same axis ratio, then
q =G> 0.53; (iv) the axial ratio of the dark halo must satisfy § > 0.34.

1 INTRODUCTION

Star count data indicate that the galactic metal-poor halo has
axial ratio 0.6<¢<0.8 (Gilmore, Wyse & Kuijken 1989;
Wyse 1990, private communication). The value ¢=0.8 has
been advocated by Bahcall & Soneira (e.g. Bahcall 1986).
More recently Wyse & Gilmore (1989) have argued for
q=0.6. The density distribution, as traced by RR Lyrae stars
and globular clusters, is found to be well described by a
power law with exponent ~ 3.5 (Saha 1985; Zinn 1985).
There is some evidence (Saha 1985) that the density falls off
more steeply (logarithmic density gradient ~35) for R=20
kpc, but it is not clear if this effect is real.

Studies of the kinematics of metal-poor halo stars in the
solar neighbourhood indicate that their velocity dispersion
tensor is anisotropic, typical values for o, g4 and o, being
140, 100 and 100 km s~ ! (Sommer-Larsen & Zhen 1990;
Morrison, Flynn & Freeman 1990; Freeman 1990, private
communication). The rotation of the population is generally
found to be small, typically v,,, <40 km s~ . Studies of more
distant fields towards the galactic poles do not show a sig-
nificant rise of o, with z (e.g. Freeman 1987; Ratnatunga &
Freeman 1989; Sommer-Larsen & Christensen 1989).

One way to model this kinematical behaviour is to choose
a potential consistent with the observed (flat) rotation curve
of our Galaxy, choose a plausible distribution function f for
the metal-poor halo, and then evaluate the kinematics of the
population from f. The results obviously depend on the
particular choices one makes. Early studies (White 1985;
Levison & Richstone 1986; Binney & May 1986) agreed
that star count data and kinematical data were inconsistent.
At that time it was believed that o,~ 65 km s™!, which led to
very flat models with 0.3<¢=<0.5. These values were much
lower than the value g = 0.8 inferred from star count data. It
has only recently been realized that the kinematical samples

then available were contaminated by thick-disc stars and that
o, for local metal-poor halo stars is probably as high as 100
km s~ 1. It is then possible to construct nearly round models
that are consistent with the kinematical data, as do Sommer-
Larsen (1987, see also Sommer-Larsen & Christensen 1989)
and Arnold (1990). These models might even be too round if
the metal-poor halo is as flat as ¢ =0.6, as argued by Wyse &
Gilmore (1989). Dejonghe & de Zeeuw (1988a) discussed
the possibility of using the more realistic Stackel potentials,
rather than the logarithmic potentials adopted by most
authors. Sommer-Larsen & Zhen (1990) try to recover f
solely from observations of Jocal metal-poor halo stars.
Their resulting model consists of two components: a main,
nearly spherical component comprising the large majority of
the mass in the metal-poor halo, and a highly flattened com-
ponent, comprising about 40 per cent of the density at the
Sun.

A different approach (White 1989; Sommer-Larsen &
Christensen 1989) is to use the tensor virial theorem to find a
relation between g and the global velocity dispersion aniso-
tropy of the metal-poor halo. The use of this relation is
limited, however, since only the Jocal shape of the velocity
ellipsoid of metal-poor halo stars is known.

The tensor virial theorem is the global average of the Jeans
equations, which themselves are averages over velocity space
of the collisionless Boltzmann equation. In the present paper
we compromise between the approaches mentioned above,
and study the Jeans equations. Several interesting questions
can be addressed in this way.

Motion in a spherical potential well requires the principal
axes of the velocity ellipsoid to align with spherical co-
ordinate axes (Eddington 1915). Dejonghe & de Zeeuw
(1988a) showed that in more realistic potentials the velocity
ellipsoid also aligns approximately with spherical coordinate
axes at large distances, whereas in the scale-free models of
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Richstone (1980), with a slightly flattened logarithmic
potential, the velocity ellipsoid aligns approximately with
cylindrical coordinate axes. Binney & Spergel (1983) argue
from orbit integrations that the truth lies somewhere
between. In this paper, consistency is demanded between the
star count data and the kinematical data on the metal-poor
halo, and then the Jeans equations are used to constrain the
tilt of the velocity ellipsoid of metal-poor halo stars above the
equatorial plane. Furthermore the reason why ¢, remains
small towards the galactic poles is studied. This is surprising
since towards the galactic poles one samples more and more
of 0,in o,.

Another interesting problem which can be studied using
the Jeans equations is the flattening of the galactic dark halo.
N-body calculations in Cold Dark Matter models lead to very
flat dark haloes. Carlberg (1990, private communication)
finds an average dark halo axial ratio §=0.46 (in fact his
dark haloes generally turn out to be triaxial; see also Frenk et
al. 1988). Sciama (1990) has argued for very flat dark haloes
on theoretical grounds. In the galactic metal-poor halo (axial
ratio q) there must be enough vertical pressure (ie. g,) to
resist the gravitational force of the galactic dark halo. The
observed values of g and o, therefore put a lower limit on the
possible axial ratio of the galactic dark halo, which can be
determined using the Jeans equations. It is interesting to
compare this lower limit with that expected from the con-
siderations above.

Throughout this paper it is assumed, unless stated other-
wise, that in the solar neighbourhood (0%, o, 0,)=(140,
100, 100) km s~" and ¥, =220 km s~ . Since v,,, is dynamic-
ally insignificant (Freeman 1987), its influence on vj is
neglected.

In Section 2 the basic assumptions that underlie the calcu-
lations in this paper are described. In Sections 3 and 4 the
Jeans equations are employed to find relations between the
shape of the velocity ellipsoid of metal-poor halo stars in the
equatorial plane and the axial ratios of the metal-poor halo
and the dark halo. These relations are compared with the
observations, and the implications for the structure of the
metal-poor halo and the dark halo are studied. In Section 5
the Jeans equations are used to study the limiting behaviour
of o, at high latitudes. Section 6 summarizes the main con-
clusions. Appendix A discusses the forces which correspond
to the dark halo potential adopted.

2 THE BASIC ASSUMPTIONS

In the following, (R, ¢, z) are cylindrical coordinates and (r,
@, ) are spherical coordinates; 6=90° corresponds to the
plane z=0.

2.1 The galactic dark halo

The rotation curve of our Galaxy is observed to be rather flat
out to at least 20 kpc from the centre (e.g. Rohlfs ez al. 1986).
It is assumed that this rotation curve is due to a dark halo. In
this paper, variables associated with the dark halo are
denoted by a tilde (e.g. 6). The potential is denoted simply by
®. A simple spherical potential-density pair for the dark halo

(e.g. White 1985; Sommer-Larsen 1987; White 1989) is that
of the singular isothermal sphere

~2
o

T 22Gr’

o(r) D(r)=6%Inr? V2i=24?, (1)
but it is more plausible to assume that the dark halo is oblate.
To model this, one can substitute

6?= 2R +22(§=1) @)

for r? in the potential of the singular isothermal sphere
(Richstone 1980; Levison & Richstone 1986). In this case
the equidensity surfaces of 6 have dimples at the poles. In the
present paper @2 is substituted for r? in the density of the
singular isothermal sphere (as also in Sommer-Larsen &
Christensen 1989); all equidensity surfaces of the dark halo
are thus oblate, with axial ratio 4. Appendix A discusses the
potential @ that is generated by this density distribution and
the forces which correspond to it.

2.2 The galactic metal-poor halo

The mass density of the metal-poor halo is denoted by p.
In this paper all equidensity surfaces of the metal-poor halo
are assumed to be concentric but not necessarily similar
spheroids. The axial ratio of a particular equidensity surface
is denoted by g. For future use I define

9 1
azlim—(g _’O)zlim_(a ng), (3a)
r-o \P 0Z] r-« \dlogz
R g, 1
E_(__P) =_(0 ogp) ’ (3b)
0 OR[(r, z-0) d1og R/, .-

where a is assumed finite. Observations typically indicate
a= f3=3.5(Saha 1985; Zinn 1985). These values are used in
the rest of the paper unless stated otherwise.

2.3 Hydrostatic equilibrium in the equatorial plane

Hydrostatic equilibrium for a stellar system is described by
the Jeans equations. Assuming axisymmetry, there are two
non-trivial Jeans equations and, for fixed o and @, four
unknowns, namely the three velocity dispersion components
and the tilt of the velocity ellipsoid in the (R,z)-plane.
Numerous authors have tried to obtain analytical, formal or
numerical solutions of the Jeans equations (e.g. Bacon,
Simien & Monnet 1983; Bacon 1985; Fillmore 1986;
Dejonghe & de Zeeuw 1988b; Evans & Lynden-Bell 1989).
In this paper some simplifying assumptions are made and
properties of the possible solutions are derived without
actually solving the equations.

No attempt is made to solve for the tilt of the velocity
ellipsoid. Instead two cases for the direction of the principal
axes of the velocity ellipsoid are studied: (I) they always align
with cylindrical coordinate axes, or (II) they always align with
spherical coordinate axes. In the following, these cases are
referred to as ‘the case of cylindrical alignment’ and ‘the case
of spherical alignment’, or simply as case I and case II. The
results for these two cases are compared with the observa-
tions to find which case fits the data best.
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__In case |, vv =0 for all i#j; i, j€{R, ¢, z}. In case II,
v,v,=0 for all k#l k, I€{r, ¢, 6}. In case I it is most con-
venient to use the Jeans equations in cylindrical coordinates.
From the axisymmetry of the problem and the assumption
that the metal-poor halo is stationary, these are (e.g. Binney
& Tremaine 1988)

apvy), (vh—vj 99
+ +—|= 4
or P\ r tar)™" (4a)
apv)) 0P
2 _=0, 4b
0z L a9z (40)

the remaining two equations being trivial. For case II it is
more convenient to use the Jeans equations in spherical
coordinates (e.g. Bacon et al. 1983)

—
- = (]
0(/011,)+B[203_(v%+v$)]+p_a_=0, (5a)
or r or
o\ovh), —_ A
609 + ol(vg—vg) cot 6]+ o — =0, (5b)

the remaining two equations again being trivial.

In the equatorial plane (z=0), which is where the solar
neighbourhood is located, equations (4a) and (5a) contain the
term

dpvi)_= o |, dlogui )
oR "R dlogpo |;-0f

In Baade’s window at a projected galactocentric distance of
0.5 kpc, the line-of-sight velocity dispersion is 113+ 11 km
s~ ! (Mould 1983). Assuming = 3.5, one can estimate very
crudely

17 logv_,i
dlog o

ilog(140/113)

.35 log85/05) =0.04. (7)

Clearly the second term in equation (6) contributes little to
the pressure that balances the gravitational force in equations
(4a) and (5a). Indeed, if this term is neglected, equation (4a)
yields

(B=—1)vk+v5=V3 (8)
and equation (5a) yields
(B-2) vk +vi+vi=V2 (9)

By substituting the observed kinematical quantities one finds
that equation (8) is satisfied for 8= 3, whereas equation (9) is
satisfied for = 3.5. Both values for g fit the available star
count data well (Saha 1985; Zinn 1985). This supports the
argument that that the second term in equation (6) does not
provide a major contribution to the pressure of the system.

Similarly, in the equatorial plane (z=0), equations (4b)
and (5b) contain the term

a(Pv—§)=‘7§/_)(

2 + d logv?
0z 0z

. 10
dlogp R=R®) (10)
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Observations show that o, does not change significantly with
height above the equatorial plane (e.g. Freeman 1987,
Ratnatunga & Freeman 1989). This indicates that also the
second term in equation (10) does not provide a major
contribution to the pressure of the system.

As a consequence of the above, one can assume that the
shape of the velocity ellipsoid with respect to its principal
axes does not vary (ie. constant anisotropy), and still
maintains approximate hydrostatic equilibrium in the solar
neighbourhood. In the following

2
) U

— vl (11)

=_1= =_1=

1 —
Yr Vs r, vo’ v¢ Ty
In the equatorial plane y, =T, and y,=T. In case I it is thus
assumed that (dy,/0R)=(9y,;/0z)=0 (i€{R, ¢}), and in case
II that (0T;/dr)=(0T;/36)=0 (jE{r, ¢}). Note that it is not
assumed that the size of the velocity ellipsoid is constant.
The principal axes of the velocity ellipsoid align both with
cylindrical and with spherical coordinate axes if v°z=

=p?=1v} for certain r. Consequently case I and case II
yield the same results if y; =T,= 1. This is the case for all rif
f=f(E, L,). The argument which justifies the above assump-
tion is strictly local. One cannot expect to be able to
construct a constant anisotropy model that describes the
kinematical properties of the whole metal-poor halo.

White (1989) and Sommer-Larsen & Christensen (1989)
use the tensor virial theorem to find a relation between
(v2)[(v?) and the axial ratio of the metal-poor halo; here
v2—2(0R+v§) and (-) denotes the density-weighted average
over the system. One might argue that our calculations
should yield the same results since constant anisotropy is
assumed. This is not so, for two reasons. First the tensor
virial theorem treats v?; and v3 on an equal footing (which is
certainly not justified by the observations), whereas we do
not. Secondly, the relation that results from the tensor virial
theorem has no clear interpretation if the velocity ellipsoid
does not align with cylindrical coordinate axes everywhere.

3 THE JEANS EQUATIONS FOR CONSTANT
ANISOTROPY SYSTEMS

In this section it is demonstrated that the assumption of con-
stant anisotropy makes it possible to split the Jeans equations
into one equation relating the size of the velocity ellipsoid to
0 and @, and one equation relating the shape of the velocity
ellipsoid to p and ®.

3.1 Case I cylindrical alignment

First substitute equations (11) in equations (4). These are
then two partial differential equations for v2. Equation (4a)
yields

0pv Ye_q pv_f_ 0P
YRO 575 -
R\, R oR

(12)

Then take the derivative of equation (4b) with respect to R,
and substitute (9%/dz dR) for (9%/0R dz). Substitution of
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equation (12) and subsequently of equation (4b) then yields

_P(¥r_y4 +6,o 0 0p a<1>
R\y, OR| oz Koz
2

+[(1—}’R)p]m=

3.2 Case II: spherical alignment

First substitute equations (11) in equations (5). These are then
two partial differential equations for v2. Equation (5a) yields

v’ r V2 @
%vs_|p 4L _p)0¥e_p 00 (14)
ar I, r or

Then take the derivative of equation (5b) with respect to r
and substitute (9%/96 9r) for (3%/dr d6). Substitution of
equation (14) and subsequently of equation (5b) then yields

0 T, do r, do

el U e B to|,— |+, —

[ T, ) ar} 20 [’o «© ( r,) o6
oD o’®

Xx = +[(1-T =0. 15
Hl-r)el (15)

3.3 Applications

The set of equations (12) and (13) or (14) and (15) can be
used to construct constant anisotropy systems which are con-
sistent with respect to the Jeans equations. One can, for
example, substitute the spherical logarithmic potential (equa-
tion 1) into equation (15) and solve for p. This leads to the
models of White (1985). However, as explained in Section
2.3, such models with constant anisotropy on a global scale
are not of primary interest in the context of the galactic
metal-poor halo (unless one builds a superposition of several
such models, as does White 1985).

Instead, in the next section, both ® and o (as defined in
Sections 2.1 and 2.2) are specified in equation (13) or (15).
The results then correspond to the approximate hydrostatic
equilibrium described in Section 2.3.

4 THE VELOCITY ELLIPSOID IN THE
EQUATORIAL PLANE

In this section, equation (13) (for the case of cylindrical align-
ment) and equation (15) (for the case of spherical alignment)
are used to derive a relation between the shape of the
velocity ellipsoid in the equatorial plane, the axial ratio g of
the metal-poor halo, and the axial ratio § of the dark halo.
These relations are then compared with the observations.

4.1 Case I: cylindrical alignment

The potential @ is assumed to be as in Section 2.1 and
Appendix A. By using equations (A3) and (A8), (0®/dR)

and (0>®/JR Jz) may be eliminated from equation (13), to
yield

7 [o2)_a (160)
26°z\0z) B’ 2
where
K(g)r* [z dp R?
A=y —— S =] +(1-y) =, 16b
YR 2§ zz 0 92 ( )’R)(Dz (16b)
y&| (R 9o z dp R’
B={1-22+ = Z ]+ yu = = +ye—1) = 16
(R LT L . S

The function K(§) is defined in equation (A4) and is related
in a very simple way to the circular speed in the equatorial
plane V2 (equation A7). For comparison with kinematical
data on metal-poor halo stars in the solar neighbourhood, we
study the case z— 0. For p as in Section 2.2,

20| = (Rop)
(p 01) a’R’ (p 0R) =0 1w

We substitute equations (3) and (17) in equations (16b) and
(16¢) and then evaluate A and B for z—0. From equation
(A2) it follows that the left-hand side of equation (16a) tends
to (1/G?) for z— 0. Rearranging terms, equation (16a) then
yields

qK(qu(z)( PTRLIN 1) (z=0). (18)
B Yo VR

4.2 Case II: spherical alignment

The potential ® is assumed to be as in Section 2.1 and
Appendix A. By using equations (A5) and (A6), (0®/dr) and
(0®/d6) may be eliminated from equation (15), and setting
(0*®/0r 30)=0 this yields

r’ [o®)_c .
26°z\0z) D’ (19a)
where

K(g) 1 9o\, [rdp
C=—=> -I,— +2(1 -
2 [ (p 26) "o o) THITTA o (190)
I, [roo
D=2-T,-L+|= L)
" Ty \p ar) (19¢)

The derivatives of o with respect to the coordinates r and 0
can be expressed in terms of the derivatives of p with respect
to R and z. For p as in Section 2.2, this yields for the solar
neighbourhood (R=R; and z—0) (using equations 3
and 17)

rao|_ o, 2 | (Lo 2 1)
L)oo (- -oz -2 o
(20)
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Substitute equations (20) in equations (19b) and (19c¢) and
then evaluate C and D for z—0. From equation (A2) it fol-
lows that the left-hand side of equation (19a) tends to (1/4?)
for z— 0. Rearranging terms, equation (19a) then yields

g
q B r, T,

—qmq)(?—;,j—z) (rl,_l) (z-~0) 1)

This is the analogue of equation (18) for the case of spherical
alignment.

4.3 Comparison with observations

Fig. 1 depicts the relation between g (the axial ratio of the
metal-poor halo) and § (the axial ratio of the dark halo)
implied by equation (18) (for the case of cylindrical align-
ment of the velocity ellipsoid) and equation (21) (for the case
of spherical alignment of the velocity ellipsoid). It follows
directly that the metal-poor halo must be flatter than
g=0.67 if the velocity ellipsoid aligns with cylindrical
coordinate axes.

Fig. 1 shows that spherical alignment of the velocity ellip-
soid implies a more spherical metal-poor halo than cylind-
rical alignment (for the same value of §). This can be
understood from equations (18) and (21). In the case of
cylindrical alignment (equation 18), the axial ratio g cor-
relates predominantly with the anisotropy (o,/0g), . In the
case of spherical alignment (equation 21), the axial ratio g
correlates predominantly with the anisotropy (o,/04),-¢
[note that T', drops out of equation (21) for = 1]. Since the
former ratio is smaller than the latter, cylindrical alignment

1 _I T T | T T T I T T T l T ! T T l/

N Y
0.8 cylindrical il —
- alignment ]
06 L | it _:
50 | :
0.4 - —
: 4 ]

- /7 spherical -
0.2~ - alignment 7]
- // -

O L e Lo v by by IL‘-
0 02 04 06 038 1

q

Figure 1. The solid lines show the relation between ¢ (the axis ratio
of the metal-poor halo) and § (the axis ratio of the dark halo) as
determined by equations (18) and (21). The shaded area is the
region allowed by the observations (0.6 < ¢<0.8). The dashed line is
the line g =4. It is assumed that (oy, 0;, 0,)=(140, 100, 100) km
s~ !in the solar neighbourhood and that 8=3.5.
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leads to a flatter metal-poor halo. This can also be argued
more intuitively. In the solar neighbourhood the velocity dis-
persion parallel to the equatorial plane exceeds that
perpendicular to it. Any tilting of the velocity ellipsoid there-
fore increases the vertical pressure (i.e. ¢,) away from the
equatorial plane, leading to a more spherical metal-poor
halo.

From the above argument it follows that models in which
the velocity ellipsoid does tilt, but not as much as in the
spherical alignment case, fall between the two curves in Fig.
1. This is therefore the region allowed by the kinematical
data. Note, however, that not all models in this region are
necessarily dynamically possible. In a spherical potential
(§=1) for example, the velocity ellipsoid must align with
spherical coordinate axes (Eddington 1915).

The above results are consistent with other models.
Sommer-Larsen (1987) and Arnold (1990) construct
(nearly) spheroidal models for the metal-poor halo in which
which the velocity ellipsoid aligns with spherical coordinate
axes (@ as in equation 1). Indeed they find that spherical
models fit the data reasonably well. White (1989) shows
from the tensor virial theorem that models in which the
velocity ellipsoid is constant in cylindrical coordinates must
be significantly flatter.

One could imagine models in which the shape of the
metal-poor halo traces the shape of the dark halo (i.e. g =4§).
Fig. 1 shows that kinematical observations in the solar neigh-
bourhood only allow such models if g =¢>0.53. Star count
data indicate that the galactic metal-poor halo has axial ratio
0.6<¢=<0.8 (Section 1). Taking this into account, the allowed
region in Fig. 1 reduces to the shaded area. The observations
put a lower limit on the flattening of the dark halo, as was
explained in Section 1. Fig. 1 shows that this lower limit is
G > 0.34 (corresponding to the lower left-hand corner of the
shaded area).

Fig. 1 shows that neither cylindrical alignment models nor
spherical alignment models are ruled out by the presently
available data. The allowed cylindrical alignment models (the
ones that border the shaded area in Fig. 1) have a dark halo
which is much rounder than the metal-poor halo, whereas
the allowed spherical alignment models have a dark halo
which is much flatter than the metal-poor halo. The truth
probably lies somewhere between, i.e. the velocity ellipsoid
does tilt, but not as much as in the spherical alignment case.
This is consistent with the conclusion that Binney & Spergel
(1983) drew from orbit integrations.

5 o, AT HIGH LATITUDES

In this section the behaviour of ¢, at high latitudes (z /R~ )
is studied by using a slightly more general potential than in
the previous sections. It is assumed to be of the form

®=3In r2+ h(6)), (22)

where = [km s~ !] is a constant and h(6) is any function for
which #'(9) is finite for all values of 6 (such that the force on
a test particle in this potential vanishes for r—~ ). Note that
the potential in Section 2.1 and Appendix A is of this form.
The circular velocity in the equatorial plane is determined by
V=232
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In the following, W=v?/V2. Again, models are studied
which have the property of constant anisotropy (Section 2.3).
The cases of cylindrical alignment and of spherical alignment
are studied separately, and the results are compared with the
observations.

5.1 CaseI: cylindrical alignment

From equation (4b) one directly obtains that

ow_1

=—(Wa-1) (z/R— ), (23)
7 z

A physical solution for W must remain finite for z/R— .
From equation (23) it follows that there is always one such
solution, for which at fixed R

lim W(z)=

Pt

Ql'—‘

(24)

5.2 Case II: spherical alignment

One wants to use the Jeans equations in cylindrical co-
ordinates to find for every fixed R an ordinary differential
equation for »? as function of z. However, equations (4)
cannot be used since in general the mixed second-order
moment vzv, does not vanish if the velocity ellipsoid aligns
with spherical coordinate axes. Instead the slightly more
complicated equations (Binney & Tremaine 1988)

dovy v, [vR—1E 0

+ 4 + 2
orR oz P\TrR Tor)™Y (25a)
v}  dovw, | (v, 0@
G0Y: | JOVRY: +22) =, 25b
oz . arR P\'R "oz (25b)

must be used. By definition v,=v,cos §—v,sinf and
vr=v,sin 8+ wv4cos 6. Since v,v,=0 in case II,

—_ 1+[(1/L,)~ 1]sin’6

YR [(1T,) = 1]cos’0 *®

(26)

with similar expressions for vRv and v These equations are
substituted in equations (25) to obtain two partial differential
equations for o2, Elimination of (0v2/OR) from these
equations yields for every fixed R an ordinary differential
equation for v? as function of z. It can be shown that for

Z /R~ o this equation is

‘;—:VJ {W[aﬂl“,— 1)(1 +ri)J_ 1] (z/R—0). (27)

2z ¢

A physical solution for W must remain finite for z /R .
From equation (27) it follows that there is always one such
solution, for which at fixed R

R 1
lim W(z)=lm — D +(1T,)° (28)

5.3 Comparison with observations

Equation (24) for case I yields o,= V,/Ja at high latitudes,
ie. 118 km s~! for ¢=3.5 and 98 km s~! for a=5 (Saha
1985). Even in the latter case, o, is still higher than the
observed value (e.g. Freeman 1987; Sommer-Larsen &
Christensen 1989). This seems to rule out the suggestion of
Freeman (1987) that the velocity dispersions are constant in
cylindrical coordinates.

From equation (28) for case II it follows that the value of
o, at high latitudes depends on the shape of the velocity elli
soid at high latitudes. If v} <22 for z /R~ %, then ¢,> V. /JR
Again this is too_high t to be consistent w1th observatlonal
data. If, however, v2> 02 for z /R~ ©, then 0, is much closer
to the observed value.

The low observed value of ¢, at high latitudes thus favours
models in which the velocity ellipsoid aligns (approximately)
with spherical coordinate axes and which have 3> v? at high
latitudes. Indeed, the models of White (1985), Sommer-
Larsen (1987) and Dejonghe & de Zeeuw (1988a), which
were constructed to fit the kinematical data on the metal-
poor halo all have these properties. Sommer-Larsen &
Christensen (1989) discussed qualitatively a model for the
formation of the galactic halo in which such a situation could
arise. In any model in which the velocity ellipsoid aligns with
spherical coordinate axes, v4=v? at §=45°. Since the above
indicates that v%>v? at high latitudes, it might be expected
that towards the galactic poles ¢, takes on a maximum value
at a height of ~ 10 kpc above the galactic plane. Interestingly,
this is consistent with the observations by Sommer-Larsen &
Christensen (1989).

6 CONCLUSIONS

In this paper, assumptions are made about the potential of
the dark halo (Section 2.1), about the mass density of the
metal-poor halo (Section 2.2), and about the tilt and shape of
the velocity ellipsoid (Section 2.3). The Jeans equations are
used to find relations between g (the axial ratio of the metal-
poor halo), § (the axial ratio of the dark halo) and the shape
of the velocity ellipsoid. These relations are compared with
the observations.

From the local shape of the velocity ellipsoid of metal-
poor halo stars (o, 0, 0,)=(140, 100, 100) km s~1] it can
be derived that:

(i) if the principal axes of the velocity ellipsoid align with
spherical coordinate axes, then the metal-poor halo must be
significantly more spherical than when the principal axes
align with cylindrical coordinate axes;

(ii) if the principal axes of the velocity ellipsoid align with
cylindrical coordinate axes, then ¢ <0.67,;

(iii) if the metal-poor halo and the dark halo have the
same axial ratio, then g =§>0.53.

If one furthermore uses the constraint 0.6< q=0.8, as
indicated by star count data, then:

(iv) the axial ratio of the dark halo must satisfy §> 0.34;

(V) neither models in which the principal axes of the
velocity ellipsoid align with cylindrical coordinate axes, nor
models in which they align with spherical coordinate axes
can be ruled out by the presently available observational
data. The truth most likely lies somewhere between.
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A study of the behaviour of o, for z/R— <« for solutions of
the Jeans equations shows that:

(vi) the observation that o, remains small towards the
galactic poles favours models in which the principal axes of
the velocity ellipsoid align approximately with spherical
coordinate axes, and v%> v? at high latitudes. An increase in
the logarithmic density gradient with increasing galacto-
centric distance (e.g. Saha 1985) would also help to keep g,
small at high latitudes.
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APPENDIX A: THE POTENTIAL @& OF THE
DARK HALO

It is assumed that the mass density of the dark halo is
6=Ca % where C=6%/2aG and @? is defined in equation
(2). From the theory of Roberts (1962) (see also Binney &
Tremaine 1988, page 57), it follows that

Q(R,z)=§—qr In[Rg?+&)+2%(1 +£)] a<

0 (1+ET+E
(A1)

This integral cannot be expressed in terms of elementary
functions. In the following, é2=|1— §?|. The forces in cylin-
drical coordinates are [use equations (2.225.1) and (2.246)
from Gradshteyn & Ryzhik (1965)]

o (26°/rgé) arctan(zé/rg), ifg<1,
5. = 12901, it g=1, (A2)
(6°/rge) nl(rg +2é)(rG ~28)), if §>1,
o0 o
—=(26%2RG) K(§) - —_.
or_(20°/2Rq)K(q)~(2/R) oz (A3)
The function K is defined as
. ” d
0 (1+ENG +E
[(Z/é) arctan(é/q), ifg<1,
=12, if g=1.
. . . o A4
ittt + esayi-eran, iea>1 A
The forces in spherical coordinates follow from
a0 'K(§
9% _G'K(q) (A5)
or rq
o® z 6°K(G) r’ od
__=£o—~(q)_r__. (A6)
9 R g R 0z
The circular speed in the equatorial plane is
0P K(g
Vg =oiz=0=r|22| =KD (A7)
OR 2=0 q

Several of these formulae were already derived by Perek
(1962), de Zeeuw & Pfenniger (1988) and Sommer-Larsen
& Christensen (1989).
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In this paper, expressions are also required for the second- equation (A1) that
order mixed derivatives of ®. It follows from equation (A5) , )
that (92®/dr 99)=(9*®/00 dr)=0. Using equation ie 0P =(—2622R/r2a")2)—(R/r2)29.
(2.225.2) from Gradshteyn & Ryzhik (1965) it follows from 0z 0R 0R 0z 0z
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