Today

The Milky Way

Galactic Structure

The Interstellar Medium

Star Formation

Stellar Populations
Our Milky Way: the view from above the disk
Galactic Structure

• Stars ~80% of mass
 – DISK ~80% of stars
 – BULGE ~20% of stars

• Gas ~20% of mass
 – atomic gas ("H I") ~2/3 of gas
 – molecular gas (H₂) ~1/3 of gas
 – hot, ionized gas ("H II")

• Dust
 – between stars
 – mostly in spiral arms & molecular clouds
Multi-wavelength Milky Way

- radio (21 cm) HI gas
- radio (CO) molecular gas
- far-IR dust
- near-IR stars
- Optical stars & dust
- X-ray hot gas

a) 21-cm radio emission from atomic hydrogen gas.
b) Radio emission from carbon monoxide reveals molecular clouds.
c) Infrared (60–100 µm) emission from interstellar dust.
d) Infrared (1–4 µm) emission from stars that penetrates most interstellar material.
e) Visible light emitted by stars is scattered and absorbed by dust.
f) X-ray emission from hot gas bubbles (diffuse blobs) and X-ray binaries (pointlike sources).
g) Gamma-ray emission from collisions of cosmic rays with atomic nuclei in interstellar clouds.
Stellar orbits
Disk

- Most stars are in the disk (2D)
- Disk stars have approximately circular orbits
- Disk stars orbit in same direction
- Individual stars oscillate slightly in the vertical direction (perpendicular to the disk), giving the disk a finite thickness
Bulge & Halo

- Bulge mass < 20% of disk
- Halo fraction small ~1%
- Bulge & halo stars have elliptical orbits
- Bulge & halo stars orbit with random orientations; fill out 3D structure
Sun’s orbital period is about 230 million years.

In 4.5 billion years, it has completed over 19 orbits.
Sun’s orbital motion (radius and velocity) tells us mass within Sun’s orbit:

\[1.0 \times 10^{11} M_{\text{Sun}} \]
Orbital Velocity Law

\[V^2 = \frac{GM}{R} \]

measure circular velocity and radius

solve for mass:

\[M = \frac{V^2 R}{G} \]

- The orbital speed \(V \) and radius \(R \) of an object on a circular orbit around the galaxy tell us the mass \(M \) enclosed within that orbit.

stars and gas: \(M \approx 6 \times 10^{10} \, M_{\text{sun}} \)
Relation of Milky Way components

- Optical stars & dust
- near-IR stars
- far-IR dust
- molecular gas
- radio (CO)
- HI gas
- radio (21 cm)
- X-ray hot gas
- Gamma-ray emission from collisions of cosmic rays with atomic nuclei in interstellar clouds.
- X-ray emission from hot gas bubbles (diffuse blobs) and X-ray binaries (pointlike sources).
- Infrared (1–4 μm) emission from stars that penetrates most interstellar material.
- Infrared (60–100 μm) emission from interstellar dust.
- Radio emission from carbon monoxide reveals molecular clouds.
- 21-cm radio emission from atomic hydrogen gas.
Gas recycling in our galaxy
Gas recycling

• Stars form in cold molecular gas clouds
Gas recycling

• Stars form in cold molecular gas clouds
• High mass stars explode
 – return processed gas to interstellar medium
 – heat surrounding gas
 • Supernova bubbles
 • Ionized gas (H II regions) [hot stars emit UV radiation]
Gas recycling

- Stars form in cold molecular gas clouds
- High mass stars explode
- Hot gas cools
 - First into “warm” atomic gas (H I), then
 - into “cold” molecular gas (H$_2$) in dusty places (~30 K)
Gas recycling

- Stars form in cold molecular gas clouds
- High mass stars explode
 - return processed gas to interstellar medium
 - heat surrounding gas
 - Supernova bubbles
 - Ionized gas (H II regions) [hot stars emit UV radiation]
- Hot gas cools
 - First into “warm” atomic gas (H I), then
 - into “cold” molecular gas (H$_2$) in dusty places
- Stars form in cold molecular gas clouds

Note: recycling is inefficient. Some mass locked up in remnants.
The Effects of Dust

• Interstellar dust
 – small grains in space
 – scatters star light passing through it

• Dims light

• Reddens it
The Effects of Dust

• Interstellar dust
 – small grains in space
 – scatters star light passing through it
• Dims light
 – blocks some light
 – stars appear fainter than they otherwise would
• Reddens
 – preferentially scatters blue light
 – light that gets through is redder than it started
Various Nebulae
H II Regions

Ionization nebulae are found around short-lived high-mass stars, signifying active star formation.
Reflection nebulae scatter the light from stars.

Why do reflection nebulae look bluer than the nearby stars?
Reflection nebulae scatter the light from stars.

Why do reflection nebulae look bluer than the nearby stars?

For the same reason that our sky is blue!
What kinds of nebulae do you see?
Star formation

• Stars form in molecular clouds
• Molecular clouds contain a lot of dust
• Most star formation occurs in spiral arms
Spiral arms are waves of star formation:

1. Gas clouds get squeezed as they move into spiral arms.

2. The squeezing of clouds triggers star formation.

3. Young stars flow out of spiral arms.
Stellar Populations

• **Population I**
 – circular orbits in plane of disk
 – mix of ages
 • young, newly formed OB stars
 • old stars (& everything in between)
 – metal rich, like sun (~2% mass in “metals”)

• **Population II**
 – elliptical orbits of all orientations
 – old stars only
 – metal poor in halo (~0.2% metals)
 • but metal rich in bulge
bulge (Pop II)

disk (Pop I)
How did our galaxy form?
Our galaxy probably formed from a giant gas cloud.
Halo stars formed first as gravity caused the cloud to contract.
The remaining gas settled into a spinning disk.
Stars continuously form in the disk as the galaxy grows older.
Stellar Populations

• **Population I** FORM IN DISK AFTER COLLAPSE
 – circular orbits in plane of disk
 – mix of ages
 • young, newly formed OB stars
 • old stars (& everything in between)
 – metal rich, like sun (~2% mass in “metals”)

• **Population II** FORM DURING COLLAPSE
 – elliptical orbits of all orientations
 – old stars only
 – metal poor in halo (~0.2% metals)
 • but metal rich in bulge