
CARMA Developers Tutorial

● Basics (CVS, CARMA, CARMA_PKG, CARMA_TOOLS)

● Building (install_all, configure, make)

● Programming (carma::util:Program, make)

● Debugging (OPT=1, cppunit)

● Exception handling

Details in:  $CARMA/doc/SEDesign.tex



Basics

● CVS  
– $CVSROOT

– $CVS_RSH=ssh  and ssh authentication

● $CARMA                    (our CVS-based sources)
● $CARMA_PKG          (tar ball repository)
● $CARMA_TOOLS     (compiled, via $CARMA)



Building

● One simple script with reasonable defaults:
● conf/install_all

\ carma=$CARMA

\ carma_tools=$CARMA_TOOLS

\ do_tools=0

\ do_carma=1

\ do_tbox=0

● Easy to wrap build scripts



Building

● $CARMA_PKG now also includes    carma_cvs.tar.gz,            
                          build at 35,000 ft

– Useful to have :pserver:anonymous@cvs access

● Not everything in $CARMA_PKG is *essential* yet

● Developer disk space needed: (status January 2004)

– CARMA: 200MB

– CARMA_PKG: 200MB 

– CARMA_TOOLS: 240MB



Building: conversion to new

● Re-install using install_all

● Re-build:

– cd $CARMA

– cvs update

– ./configure

– make config clean scripts carma tests

● No java check yet !



Hierarchical Makefile's

● Automatic dependancy building (.d files) vs. 
Makefile.rules

● Top level:  
– make clean incs libs bins tests docs

● carma/module/:

● carma/correlator/xxx/yyy:

– Deeply nested libraries?



Command Line User Interface
(class Program, SimpleProgram)

● Uniform and simple to use
– all programs understand “--help”

● Programs self-describe

– program –keywords

● Keywords: program and system keywords
● keyword=value

● “--” to separate “key=val” from free form



CLUI (cont'd)

● “--” to separate “key=val” from free form

– How do we advertise the -options vs. key=val?



CLUI (cont'd)

● $CARMA/doc/Program.tex
– Needs more essential doxy's in Program.cc



Debugging

● Different sandbox (or edit makedefs)
– --with-debug

● Command:  “make OPT=1”



Exception Handling

● Exception handling 

– dynamic and verbose messages!

“not enough memory”     “file could not be opened”



Software Infrastructure needs

● Build system
– autoconf based hierarchical makefile's

– Tinderbox w/ extensive run-time tests (+dox)

– CARMA_PKG (/sw/carma_pkg)

– CARMA_TOOLS

● Linux distributions
– Redhat9 vs. RHEL/3  (UML:  for experimentalists)

● Mdk82@UMD and FC1 (2.4.22) appear to work fine too

– Kernel     2.4.20 vs. 2.4.23      (multi-threading)

– Compiler 3.2.2 vs. 3.3.2         (ANSI standards)



Todo's

● Proper CST webpage @ mmarray.org

● No global <config.h> or <carma.h>

● No  “make docs” for local doxygen testing
● Does tinderbox look at “make tests” at all?
– Needs more smarts in tinderbox

● Watch out for long compile times
● Configuration system (e.g. for default keys)
● Daisy-chaining carma's (carma_{start,end})



Todo's (cont'd)

● Make -j
● Make OPT=1 COVERAGE=1... (flavor 

building)
● Unified carma_ctl start|stop|restart|status.\...
– Can we live without .csh, .sh, .pl, .py .... 

versions?

● Binary developer distributions? (carma_tools)
● Other compilers ?   (intel8.0 @linux, gcc @sol)


