
Using CMHOG with NEMO and MIRIAD

Peter Teuben

May 6, 2023

Abstract

An overview is given how to use and extend the Piner, Stone & Teuben
(1995, ApJ 449, 508) hydro code cmhog, and in particular how HDF1 out-
put data can be used with NEMO and MIRIAD for some basic visualiza-
tion and data analysis. Only single runs are covered, restart runs are not
discussed here. An unfortuitous bug that combined a wrong bar position
angle and reversed the azimuthal forces from the bar was fixed in 2011,
and updated results are further discussed in Kim, Seo, Stone, Yoon &
Teuben (2011)

1 Introduction

The “cmhog” code is an isothermal PPM code, that was adopted to run a 2-
dimensional polar-grid gas flow in a barred galaxy (Piner, Stone & Teuben,
1995 ApJ 449, 508). Because of symmetry, only half of the plane is normally
simulated, with the appropriate boundary condition. The bar is elongated along
the Y-axis, with counter clockwise gas flow. Initially the bar is absent, but
slowly (usually 0.1Gyr) turned on while keeping the total mass constant. The
simulation is usually followed for 1-2 Gyr, to settle into a quasi-stationary state,
at which time the gas properties (density, flow velocities) can be studied and
compared to observations.

2 The “cmhogin” input file

The cmhog program uses a classic, but not often used, method of parameter in-
put that is a little more rubust to errors than the more often (ab)used method
of reading information from standard input or some user defined file. It’s called
namelist, a specially formatted textfile, and works roughly like magically read-
ing a FORTRAN named common block. in one read, with a convenient way to
set defaults for all values in the program.

1cmhog only writes the HDF4/SDS data format, no HDF5!

1



2

2.1 For the programmer

For the programmer it is very convenient to pass parameters via a namelist.
After opening the unit somewhere at the beginning of the program (cmhog does
this in mstart.src) various subroutines can simply read the namelist that they
need with a simple read statement.

open(unit=1,file=’cmhogin’ ,status=’old’) ::mstart.src

real*8 amp,amode,n,aob,qm,rhoc ::galaxy.src

real bartime

namelist /pgen/ amp,npar,amode,n,aob,rl,qm,rhoc,bartime

read (1,pgen)

logical lgrid

namelist /ggen2/ nbl,ymin,ymax,igrid,yrat,dymin,vgy,lgrid ::ggen.src

namelist /ggen3/ nbl,zmin,zmax,igrid,zrat,dzmin,vgz,lgrid

read (1,ggen2)

2.2 For the user

For the user this means all parameters are set in a simple ascii file named
“cmhogin” that can be edited. This file must be in the current directory when
cmhog starts to run (see also runcmhog below for an alternative approach). Here
is a sample cmhogin file:2

$rescon $end

$hycon idiff=1,ifltn=1,tlim=2.0 $end

$ggen2 nbl=132,ymin=0.1,ymax=16.0,yrat=1.03926991,igrid=1,lgrid=.true. $end

$ggen3 nbl=80,zmin=-1.5708,zmax=1.5708,igrid=1,lgrid=.true. $end

$ijb $end

$ojb $end

$ikb $end

$okb $end

$eos ciso=5.0 $end

$pgen amp=10.0,amode=1.0,n=1.0,aob=2.5,rl=6.0,qm=4.5e4,rhoc=2.4e4,bartime=0.1 $end

$spiral spamp=0.0,spang=-0.5236,spsc=1.0,sppat=32.74,sr=4.0,pc=2.328 $end

$pgrid $end

$iocon dthdf=0.1,dtmovie=5.0,dthist=0.01 $end

$mlims cma1=3.0,cmi1=-2.0,cma2=200.0,cmi2=-200.0,cma3=200.0,cmi3=-200.0 $end

2g77 would allow namelist lines to end in $, in gfortran $end is needed



3

When cmhog finishes, the file cmhogout will reflect the full status of the
namelist, not just the variables entered via the cmhogin file.

The most common ones to modify are (geometry in ggen2 and ggen3 will
be dicussed later)

• pgen/aob Axis ratio a/b of the bar, note it will be > 1.

• pgen/rl Lagrangian radius, in kpc, along bar axis. This then sets the
pattern speed.

• pgen/qm Quadropole moment, this sets the mass fraction of the bar.

• pgen/rhoc Central density, this sets

• pgen/bartimeTime for the bar to (linearly) grow to full strength (in Gyr)

• iocon/dthdf Timestep for HDF (HDF4/SDS) data dumps (in Gyr)

• icon/dtmovie Timestep for mde/mvt/mvr data dumps (in Gyr). These
are not very useful actually, they are 8 bit deep. If set to 0 (the default)
none will be produced.

• icon/dthist Timestep in history file (in Gyr)

• hycon/tlim Stop time of the integration (in Gyr)

• pgrid/pot0A fits file that contains the axisymmetric part of the potential
on a grid. Length units must be kpc, and the potential must be defined
on the whole grid, in particular out to a radius of ggen2/ymax kpc.

• pgrid/pot1 A fits file that contains the non-axisymmetric part of the
potential on a grid. Length units must be kpc.

• pgrid/omega Pattern speed if you want to override the value derived from
pgen/rl

• pgrid/vhaloBackground (softened isothermal) halo potential asymptotic
velocity.

• pgrid/rhaloBackground (softened isothermal) halo potential core radius.

• pgrid/gamma Scaling factor for the grid potential. This acts like an M/L
factor, but is only used when a halo (vhalo>0) is used. Once the halo is
added this gamma factor can be used to determine the amount of the disk
contribution w.r.t. maximum disk.

• pgrid/naxis1 ,pgrid/naxis2, pgrid/rmax Setting only these will gen-
erate an internal grid, instead of the external grid on pot0/pot1. It’s
really a cheat and meant for debugging potentials. rmax is also needed,
and defines the maximum extent of the grid in X and Y.



4

• pgrid/rtstart,pgrid/rtscale The starting radius, and scale-length (in
kpc) where an exponential taper is applied to the non-axysymmetric part
of the potential. Normally the defaults are such (1000,1000) that a taper
is not applied.

• pgrid/rnstart,pgrid/rnscale The starting radius, and scale-length (in
kpc) within which a nuclear tapering is applied. This is needed to en-
sure that near the center the potential is sufficiently axisymmetric to pre-
vent gas flow to concentrate on the center, and not some point slightly
off-centered. This can often occur for grid potentials derived from obser-
vations. Normally the defaults are such (-1000,1000) that a taper is not
applied.

2.3 Choice of the grid

The grid is a polar grid, and set by the ggen2 (radial, the Y variable) and ggen3

(angular, the Z variable) namelist entries, of which the min and max variables
control the inner and outer edges of the grid in that dimension resp. The code
in ggen.src will read the namelists and generate a grid.

$ggen2 nbl=132,ymin=0.1,ymax=16.0,yrat=1.03926991,igrid=1,lgrid=.true. $

$ggen3 nbl=80,zmin=-1.5708,zmax=1.5708,igrid=1,lgrid=.true. $

We suggest the following procedures, mirroring the igrid=1 and igrid=2

cases in the ggen3 namelist:

1. choose ggen2/ymin= ymin, the inner radial boundary of the grid (in kpc).
We normally choose 0.1

2. choose ggen2/ymax= ymax, the outer radial boundary of the grid (in kpc).
We normally choose 16.

3. choose ggen2/nbl = Ny, the number of radial zones.

4. choose ggen2/yrat = f , it should be a little over 1, probably around

f ≈

ymax

ymin

1/Ny

this formulae is based on a simple geometric growth of the cell edges, in
reality it are the cell sizes that grow geometrically with f .

5. Compute ggen3/nbl = Nz, the number of angular zones, such that cells
are close to being square from the following relationship that equates the
angular and radial zone size near at inner boundary:

πymin

Nz
= dymin = (ymax − ymin)

f − 1

fNy − 1



5

or

Nz =
π

ymax

ymin
− 1

fNy
− 1

f − 1

The Nz computed this way is not an integer, but if rounded to the nearest,
the zones will be square enough for large enough N . An alternative is to
find the value of f that results in an exact integer value. For this a
Newton-Raphson search is needed (see below).

6. Set ggen3/zmax = zmax to π/2 for a half-symmetric plane.

7. Set ggen3/zmin = zmin to −π/2 for a half-symmetric plane.

A NEMO program grid is distributed with cmhog2 to aid in choosing a grid
with decent properties. In default mode it will follow the above procedure, e.g.

% grid ny=251 ymin=0.1 ymax=16 yrat=1.02043

ny=251 ymin=0.1 ymax=16 yrat=1.02043 dymin=0.00204079 dz=0.00204

nzy=153.94 est_yrat=1.02043 igrid=1

suggests that for this choice of yrat the number of angular zones should be
Nz = 154.

An alternative approach is to first fix the number of angular zones, which
through the desired square grid determines dymin, from which then yrat can
be computed:

1. choose ggen2/ymin = ymin, the inner boundary of the grid (in kpc). We
normally choose 0.1

2. choose ggen2/ymax = ymax, the outer boundary of the grid (in kpc). We
normally choose 16.

3. choose ggen3/nbl = Nz, the number of angular zones

4. choose ggen2/nbl = Ny, the number of radial zones.

5. set ggen2/dymin from the requirement that the grid should be close to
square, i.e.

dymin =
πymin

Nz
.

Compute ggen2/yrat = f , by solving for

πymin

Nz
= (ymax − ymin)

f − 1

fNy − 1

For this a Newton-Raphson search is needed. It should be noted here that
f should not be too different from 1, e.g. 1.05 is ok, but not much larger.
This is because higher-order schemes like PPM rely on a fortuitious can-
cellation of truncation error which only occurs if the grid size is uniform.
As you make f much different than one, this uncancelled error can become
significant.



6

6. Set ggen3/zmax = zmax to π/2 for a half-symmetric plane.

7. Set ggen3/zmin = zmin to −π/2 for a half-symmetric plane.

% grid ny=251 ymin=0.1 ymax=16 nz=154 dymin="pi*0.1/154"

ny=251 ymin=0.1 ymax=16 yrat=1.02043 dymin=0.00204 dz=0.00204

nzy=154 est_yrat=1.02043 igrid=2

0.5 1 1.5 2 2.5
1

1.02

1.04

1.06

1.08

40 

60 

80 

120 

160 

240  

Figure 1: The zone expansion factor, yrat, as a function of the ratio of radial
to angular zones, for a few selected values of the number of angular zones.

3 Output Files

For the remainder of the discussion, we will assume all data produced by cmhog

is dumped in a run-directory. In general, it is a good idea to remove any
potential files cmhog may create, though in practice only the hdfXXXbg files are
the problem makers (by default data would be appended to any existing HDF
files).

Depending on options given to the program, you may find the following files
in your run directory:

• cmhogin Input namelist, that controls the program. This is generally the
only input file (except if pgrid is used, two fits files will be input files).

• cmhogout Output namelist, reflects current state of all variables.



7

• history Ascii table with time in the first column, other columns are used
for things such as mass loss across the inner and outer boundaries etc.etc.

• hdfXXXbg Full HDF dataset, in HDF4/SDS format (Scientific Data Set),
typically with three named “fields”: the R-VELOCITY, PHI-VELOCITY, and
DENSITY. The NEMO program tsd will display the contents of such SDS
files. Each file contains information for one timestep. hdf0000bf is nor-
mally the first one, for t = 0 at the beginning of the simulation.
NOTE: Existing dataset will get their new SDS’s appended to the pre-
vious ones. Most scripts that will be discussed in this paper, will then
break.

• mdeXXXbg Sample X-Y gridded density in a 8bit deep image (if dtmovie
> 0)

• mvrXXXbg Sample X-Y gridded radial velocity in a 8bit deep image (if
dtmovie > 0)

• mvtXXXbg Sample X-Y gridded tangential in a 8bit deep image (if dtmovie
> 0)

Although the author has mostly used NEMO for analysis and visualization,
there is a native NCSA program which can be used to quickly just look at the
numbers.

% hdp dumpsds -i <index> -d <hdf_file>

which writes only the data of set with index index. Index 0 are the phi values,
index 1 are the radial values, and those are repeated in 3,4 and 6,7. The v, w
and d data is in sets 2, 5 and 8. To get the dimensions, use -h instead of -d on
sets 0 and 1 to get the header (not the data) and grep for the ’Size =’ line. Not
all that pretty but it all works!

% hdp dumpsds -i 0 -d hdf0001bg # PHI (vector)

% hdp dumpsds -i 1 -d hdf0001bg # R (vector)

% hdp dumpsds -i 2 -d hdf0001bg # R-velocity (matrix)

% hdp dumpsds -i 5 -d hdf0001bg # PHI-velocity (matrix)

% hdp dumpsds -i 8 -d hdf0001bg # DENSITY (matrix)

4 NEMO programs

Most, if not all, NEMO programs come with a manual page that should explain
the command line parameters (keywords) in more detail.



8

4.1 runcmhog

cmhog is a program that needs to be run in a clean directory, and you cannot
run another cmhog in that directory. That is because the names of files that
cmhog produces are FIXED by the program, and cannot be changed even by the
cmhogin file (it is also not practical to do that). To help running cmhog, a small
pre-processor was written, called runcmhog. It is a little C program available in
NEMO with which you can use a template cmhogin file and override parameters
and set a run directory, e.g.

% runcmhog -n cmhogin.small run001 aob=2.0

% runcmhog -n cmhogin.small run002 aob=2.5

% runcmhog -n cmhogin.small run003 aob=3.0

% runcmhog -n cmhogin.small run004 aob=3.5

Jianjun Xu (a student of Jim Stone) once wrote a nice graphical frontend,
based on Tcl/Tk, to parse and generate cmhogin files. The code still exists, but
has not been excersized in a long time.

4.2 tsd

tsd scans an HDF SDS :

% tsd hdf0001bg

Found 3 scientific data sets in run001/hdf0001bg

1: R-VELOCITY AT TIME=1.00E-01(20,37) km/sec -> [740 elements of type: 5 (FLOAT32)]

2: PHI-VELOCITY AT TIME=1.00E-01(20,37) km/sec -> [740 elements of type: 5 (FLOAT32)]

3: DENSITY AT TIME=1.00E-01(20,37) Msolar/pc**2 -> [740 elements of type: 5 (FLOAT32)]

but can also print out data values and the coordinate system. In our case, the
first axis is the radial coordinate, and will not be a regularly sampled axis. The
second axis is the angular coordinate, and will be regularly sampled (normally
between −π/2 and π/2).

Here is an example of getting the “rotation curve” from T=0. First we need
to run tsd again, just to confirm how many radii we have, in this case the 2nd
dimension listed in the output of the arrays.

% tsd hdf0000bg

Found 3 scientific data sets in hdf0000bg

1: R-VELOCITY AT TIME=0.00E+00(40,67) km/sec -> [2680 elements of type: 5 (FLOAT32)]

2: PHI-VELOCITY AT TIME=0.00E+00(40,67) km/sec -> [2680 elements of type: 5 (FLOAT32)]

3: DENSITY AT TIME=0.00E+00(40,67) Msolar/pc**2 -> [2680 elements of type: 5 (FLOAT32)]

% tsd hdf0000bg - coord=t | head -67 | tabplot - 1 4

4.3 sdsfits

The individual “fields” from an hdfXXXbg files can be converted to FITS files,
for visual inspection. Just remember that the first axis is the radial axis, the
second one the angular. A ring will thus show up as a vertical structure.



9

(a) Polar coordinates (b) Cartesian coordinates

Figure 2: Logarithmic density in polar coordinates:
% sdsfits hdf200bg mapd.fits 3

% fitsccd mapd.fits - | ccdmath - - ’log(%1)’ | ccdplot -

yapp=denrt.ps/vps

Logarithmic density in cartesian coordinates:

% hdfgrid hdf200bg - 3 | ccdmath - - ’log(%1)’ | ccdplot -

yapp=den.ps/vps

% sdsfits hdf0001bg map001vr.fits 1

% sdsfits hdf0001bg map001vt.fits 2

% sdsfits hdf0001bg map001de.fits 3

Here is another plot:

% fitsccd mapd.fits - | ccdmom - - axis=2 mom=0 | ccdprint - x= newline=t | tabplot - 0 1 line=1,1

it plots total density averaged in rings, as function of cell.

4.4 hdfgrid

hdfgrid regrids selected gas properties from our HDF files into a cartesian
coordinate system. It is specific to this polar-coordinate problem.

% hdfgrid hdf0001bg map000de.ccd zvar=den

% hdfgrid hdf0001bg map000vr.ccd zvar=vr

% hdfgrid hdf0001bg map000vt.ccd zvar=vt

% hdfgrid hdf0001bg map000vx.ccd zvar=vx

% hdfgrid hdf0001bg map000vy.ccd zvar=vy

Note that the vx and vy velocity fields are computed on the fly. Nearest
neighbor cells are used for bi-linear interpolation. Some assumptions about the
symmetry properties of the variables have been made, in case only a half-plane
was computed.



10

5 flowcode

Although gas flow in a barred galaxy never reaches an exact steady state, it
does approach something that can perhaps be called a QSSS. However, another
approach to understand the gas flow is take a particular snapshot, and integrate
test particles in the velocity field, i.e. solve the equations

dx

dt
= Vx(x, y)

and
dy

dt
= Vy(x, y)

NEMO’s flowcode program does that. For this a special “vrt” file (NEMO
image format) is needed as input for the integrator, consisting of two 2D images
with VR and VT, followed by two 1D images with the coordinates in Radius
and Polar Angle (called PHI) A “vrt” map is created with a script mkvrt.

In NEMO you will have to compile flowcode, e.g.

mknemo flowcode

but also the .so files:

cd $NEMO/src/nbody/evolve/flowcode

make vrt.so vrtd.so

cp *.so $NEMOOBJ/potential

(sorry, no make target yet....)

The so-called ‘‘vrt’’ and ‘‘vrtd’’ files are to be made from HDF files,

with the script mkvrt and mkvrtd that didn’t come with flowcode yet

...(catch-22)..

Here is an example of use: the initial conditions is gas flow on

circular orbits, so we’ll integrate the flow and see if they remain

on circular orbits:

mkvrt hdf0000bg test0000.vrt

5.1 NEMO scripts: mkbar

Shell scripts are probably currently the easiest way to setup problems. In order
to make them reusable, much like NEMO programs, they should take a series
of “keyword=value” command line arguments.



11

#! /bin/csh -f

#

#

#> nemo.need mkconfig snapadd snapscale snaprotate snapspin

# bar length and axis ratio of bar

set b=1.4

set q=0.2

#

set n=100

# derived quantities

set phi=‘nemoinp "atand($q)"‘

rm bulge line1 line2 bar disk model.dat

mkconfig - $n shell "$q*$b" | snapscale - bulge 1 1,1,0.4

mkconfig - $n line $b | snaprotate - - 90-$phi z | snapshift - line1 "-$q*$b,0,0"

mkconfig - $n line $b | snaprotate - - -90-$phi z | snapshift - line2 "$q*$b,0,0"

mkconfig - $n ring $b | snapscale - bar 1 $q,1,1

mkconfig - $n ring 2 | snapspin - disk 1

snapadd disk,bulge,line1,line2,bar model.dat

Figure 3: Face on view of a simple schematic for a counter-clockwise rotating
bar, as is used in the hydro models:
% snapplot model.dat yapp=model1.ps/vps



12

5.2 NEMO scripts: project

Projecting a bar to match observations takes 3 geometric parameters: position
angle and inclination of the galactic disk, and position angle of the bar, all
measured from the sky. In addition there will be centering (xpos,ypos,vsys) and
scaling (pscale, vscale) parameters, that will come later. To aid in figuring out
the geometric projection, a script project was written, that projects the model
from the previous section. It is somewhat taylored for the way we measure
angles in astronomy. In here phi is defined as the angle between bar and disk,
as measured in the plane of the sky.

#! /bin/csh -f

#

#> SCALE inc=0 0:90:1

#> RADIO rotation=ccw ccw,cw

#> SCALE pa=0 -180:180:1

#> SCALE phi=0 -90:90:1

#> RADIO yapp=/xs /xs,/vps,/ps,/gif

#> ENTRY text=

foreach a ($*)

set $a

end

if ($rotation == "cw") then

snaprotate model.dat - "atand(tand($phi)/cosd($inc+180)),$inc+180,$pa" zyz |\

snapplot - psize=vz/4 yapp=$yapp xlabel="inc=$inc ($rotation) pa=$pa phi=$phi" "ylabel=$text"

else

snaprotate model.dat - "atand(tand($phi)/cosd($inc)),$inc,$pa+180" zyz |\

snapplot - psize=vz/4 yapp=$yapp xlabel="inc=$inc ($rotation) pa=$pa phi=$phi" "ylabel=$text"

endif

This script uses NEMO’s tkrun interface, so you need to run it as follows:

% tkrun project

5.3 NEMO scripts: mkbar cube ref.csh

The script listed below is an older one where the geometry (cw/ccw) was not
properly programmed, but included for completeness. It will use a reference
cube (n4303cube.fits) to aid in matching up the theoretical data with an
observation.

#! /bin/csh -f

#

# This scripts takes an HDF output snapshot file from cmhog

# (bar hydro, polar coordinates), projects it to a requested

# sky view, and using WIP summarizes the results

# Bar is conveniently oriented along Y axis (PA=0), and flows CCW.

# For CW rotating galaxies you may have to add 180 to ’inc’ and/or ’pa’

#

#



13

# 23-sep-95 Created Peter Teuben

# 15-nov-95 beam=0.2 frang=45

# 24-nov-95 defaults for more central region, fixed dependancies

# 9-jul-96 hacking for N5383

# 24-jul-00 BIMA proposal N4303 et al.

# 5-sep-00 modified to write cubes instead of moment maps

# 12-mar-01 radecvel=t to make karma swallow these fits files

# 13-mar-01 use phi,inc,pa (no more +/- 180) and documented geometry

# (notice that earlier versions had sign of radial vel wrong)

# 23-mar-01 added a refmap and fixed refscale; this assumes that the refmap

# (often a cube) has the reference pixel defined to the be

# center of the galaxy (bimasong data often don’t do the VELO axis correct)

# 17-apr-01 added velocity referencing using ’vsys’ to be at v=0 in the model cube

# (bugs when model and data have different delta-V)

# 11-apr-02 generic version with new geometry definitions

if ($#argv == 0) then

echo Usage: $0 in=HDF_DATASET out=BASENAME ...

echo Gridding and projecting 2D CMHOG hydro models to given bar viewing angles

exit 0

endif

# Required Keywords

unset in

unset out

# Defaulted Keywords

set pa=-42

set inc=27

set phi=44

set rot=1

#

set rmax=6

set n=200

set beam=0.05

set color=1

set clean=1

#

set refmap=""

set pscale=0.5

set vscale=1

set vsys=0

# Velocity gridding for cube (dv=2*vmax/nvel)

set nvel=50

set vmax=250

set par=""

# Parse commandline to (re)set keywords, special case for par=

foreach a ($*)

set $a

if (-e "$par") then

source $par

set par=""

else

echo Warning, par=$par does not exist

set par=""

endif



14

end

#

# fix inc/pa for ccw(rot=1) or cw(rot=-1) cases for NEMO’s euler angles

#

if ($rot == -1) then

set inc=$inc+180

else if ($rot == 1) then

set pa=$pa+180

else

echo "Bad rotation, must be 1 (ccw) or -1 (cw)"

exit 1

endif

# Show i’m happy

echo Files: in=$in out=$out

echo Grid: rmax=$rmax n=$n beam=$beam

echo Projection: phi=$phi inc=$inc pa=$pa

# Derived quantities

set cell=‘nemoinp "2*$rmax/$n"‘

set range="-${rmax}:${rmax}"

echo " Derived: cell=$cell"

if (-e "$refmap") then

# referencing

set nz=(‘fitshead $refmap | grep ^NAXIS3 | awk ’{print $3}’‘)

set pz=(‘fitshead $refmap | grep ^CRPIX3 | awk ’{print $3}’‘)

set vz=(‘fitshead $refmap | grep ^CRVAL3 | awk ’{print $3}’‘)

set dz=(‘fitshead $refmap | grep ^CDELT3 | awk ’{print $3}’‘)

set dz1=‘nemoinp "2000*$vmax/$nz"‘

set vref=‘nemoinp "($vz-1000*$vsys)/($dz1)+$nvel/2+0.5"‘

#set vscale=‘nemoinp "$vscale*(2*$vmax/$nvel)/($dz/1000)"‘

set refscale=$pscale,$pscale,$vscale

# CHECK : is this -0.5 or +0.5 ?????

set refcen=‘nemoinp $n/2-0.5‘

#set refpix=$refcen,$refcen,$vref

# now assuming model is centered, as well as data cube

set vref=‘nemoinp $nvel/2+0.5‘

###set vref=‘nemoinp $nvel/2-0.5‘

set refpix=$refcen,$refcen,$vref

echo $nz $pz $vz $dz

echo Vsys at OBS pixel: ‘nemoinp "(1000*$vsys-$vz)/$dz+$pz"‘

echo REFPIX: $refpix

echo REFSCALE: $refscale

else

echo BUG: need to rewrite this section for when no refmap given..... since you did not

exit 1

endif

#> nemo.need tabtos snaptrans snaprotate snapadd snapgrid ccdsmooth ccdmath ccdfits fitshead

set tmp=tmp$$



15

if (! -e $out.den.fits) then

# convert the half-plane HDF file to a full plane snapshot file

tsd in=$in out=$tmp.tab coord=t

if ($status) goto cleanup

tabtos in=$tmp.tab out=$tmp.s0 block1=x,y,vx,vy,mass

snaptrans in=$tmp.s0 out=$tmp.s1 ctypei=cyl ctypeo=cart

snaprotate in=$tmp.s1 out=$tmp.s2 theta=180 order=z

snapadd $tmp.s1,$tmp.s2 $tmp.s3

# project for skyview, and create a intensity and velocity field

snaprotate $tmp.s3 $tmp.snap \

"atand(tand($phi)/cosd($inc)),$inc,$pa" zyz

foreach mom (0 1 2)

snapgrid in=$tmp.snap out=$tmp.$mom \

xrange=$range yrange=$range nx=$n ny=$n moment=$mom mean=t

ccdsmooth in=$tmp.$mom out=$tmp.$mom.s gauss=$beam

end

ccdmath $tmp.1.s,$tmp.0.s $tmp.vel %1/%2

## BUG: ifgt() doesn’t work

## ccdmath $tmp.0.s - "ifgt(%1,0,log(%1),-10)" | ccdfits - $out.den.fits

ccdmath $tmp.0.s - "log(%1)" | ccdmath - - "ifeq(%1,0,-10,%1)" | ccdfits - $out.den.fits \

object=$in comment="$0 $in $out $pa,$inc,$phi,$range,$n,$beam" \

refmap=$refmap scale=$refscale refpix=$refpix

ccdmath $tmp.2.s,$tmp.0.s,$tmp.vel - "sqrt(%1/%2-%3*%3)" | ccdfits - $out.sig.fits \

object=$in comment="$0 $in $out $pa,$inc,$phi,$range,$n,$beam" \

refmap=$refmap scale=$refscale refpix=$refpix

ccdfits $tmp.vel $out.vel.fits \

object=$in comment="$0 $in $out $pa,$inc,$phi,$range,$n,$beam" \

refmap=$refmap scale=$refscale refpix=$refpix

### BUG: ccdmath - - "ifgt(%1,0,log(%1),-10)" |\

# now also create the (smoothed) cube

snapgrid in=$tmp.snap out=- \

xrange=$range yrange=$range zrange=-${vmax}:${vmax} \

xvar=x yvar=y zvar=-vz \

nx=$n ny=$n nz=$nvel moment=0 mean=t |\

ccdsmooth - - gauss=$beam |\

ccdmath - - "log(%1)" |\

ccdmath - - "ifeq(%1,0,-10,%1)" |\

ccdfits - $out.cube.fits \

object=$in comment="$0 $in $out $pa,$inc,$phi,$range,$n,$beam" \

refmap=$refmap scale=$refscale refpix=$refpix

rm -fr $tmp.*

else

echo Warning: skipping gridding and projecting

endif

exit 0



16

cleanup:

if ($clean) rm $tmp.*

6 Stellar Orbits

7 cmhog: the Program

Files are .src (fortran source to be pre-processed by cpp) and .inc (for the pre-
processor) and .h (standard fortran includes). On some operating systems (e.g.
GNU/linux) the use of cpp as a pre-processor meant that single quotes could
not be used in fortran comments.

main

mstart

setup

grid_generator (ggen)

problem_generator (galaxy)

nudt

dataio

solver

intchk

dataio

special

nudt

dataio

7.1 Potential

The potential and forcefield are defined through two subroutines named inipotential
and potential. They follow the standard way how potentials are coded in the
NEMO environment, with the advantage that a variety of NEMO programs are
now acccessible to investigate such potentials. Within NEMO potentials can
be written in either Fortran or C, although in order for cmhog to make use
of them, any C version would need the usual interface layer between Fortran
and C. The standard distribution of the bar hydro project of cmhog implements
the potential in piner94.src, which is (or should be) identical to the one in
$NEMO/src/orbit/potential/data/piner94.f.

The standard “piner94” potential is fixed in size by setting the bar length
to 5kpc and the velocity amplitude at 20 kpc to 164.204 km/s (see discussion
in Athanassoula 1992)



17

The following are the standard “potpars” parameters to this potential.

omega normally set to 0, since it is derived from ‘‘lagrad’’, and returned in this

amode not used [0]

index power of bar density law, not used ? [1]

axirat Axis ratio a/b of the bar (a number > 1) [2.5]

radlag Lagrangian radius along the bar axis, defined where the forces balance [6.0]

quad Quadrupole moment, measures the bar strength [45,000]

cenden Central Density, sets the slope of the central velocity field [24,000]

(or equivalently, the core radius)

7.2 Potentials on a grid

In the fall of 2002 the cmhog code was modified to handle potentials on a grid.
Two additive potentials, as FITS files, can be given in the (new) pgrid directive
in the cmhogin file. The coordinate system in the FITS file, as defined by the
usual CRVAL/CRPIX/CDELT keywords in the FITS header, must be linear
and in KPC (typically covering -16 to 16 kpc or so, but perhaps a little more
to handle the edges).

The following shell snippet shows how to create a potential:

% potccd grid0 athan92 0,1,1,2.5,6.5,0,24000 x=-17.5:17.5:0.07 y=-17.5:17.5:0.07 omega=0

% ccdfits grid0 grid0.fits

% fitshead grid0.fits

SIMPLE = T /

BITPIX = -32 /

NAXIS = 3 /

NAXIS1 = 501 /

NAXIS2 = 501 /

NAXIS3 = 1 /

COMMENT FITS (Flexible Image Transport System) format is defined in ’Astronomy

COMMENT and Astrophysics’, volume 376, page 359; bibcode: 2001A&A...376..359H

CRPIX1 = 1.000000000E+00 /

CRPIX2 = 1.000000000E+00 /

CRPIX3 = 1.000000000E+00 /

CRVAL1 = -1.750000000E+01 /

CRVAL2 = -1.750000000E+01 /

CRVAL3 = 0.000000000E+00 /

CDELT1 = 7.000000030E-02 /

CDELT2 = 7.000000030E-02 /

CDELT3 = 0.000000000E+00 /

CTYPE1 = ’X ’ /

CTYPE2 = ’Y ’ /



18

CTYPE3 = ’Z ’ /

DATAMIN = -2.563205781E+05 /

DATAMAX = -4.864591797E+04 /

ORIGIN = ’NEMO ’ /

AUTHOR = ’teuben ’ /

OBJECT = ’ ’ /

COMMENT

HISTORY NEMO: History in reversed order

HISTORY ccdfits grid0 grid0.fits VERSION=5.0

HISTORY potccd grid0 athan92 0,1,1,2.5,6.5,0,24000 x=-17.5:17.5:0.07 y=-17.5:1

7.5:0.07 omega=0 VERSION=1.4

END

8 Installation

The best way to obtain cmhog is via git:

git clone https://github.com/teuben/cmhog2

cd cmhog2

configure --help (study the options you may which to use, see below)

configure

make cmhog

make bench

% configure --help

...

Optional Features:

--disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no)

--enable-FEATURE[=ARG] include FEATURE [ARG=yes]

--enable-cfitsio enable it, the default is that it won’t use CFITSIO

Optional Packages:

--with-PACKAGE[=ARG] use PACKAGE [ARG=yes]

--without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no)

--with-pgmax=SIZE Maxim size grid that can be read with cfitsio

--with-cfitsio-prefix=PFX prefix where cfitsio lives (lib,include or sourse)

8.1 Ubuntu

Here’s an example of packages needed for Ubuntu22.04

sudo apt install hdf4 hdf4-tools cfitsio gfortran make



19

8.2 CFITSIO

If compilation still fails, e.g. due to the CFITSIO interface, you may also man-
ually need to edit the Makefile to the correct path of where CFITSIO (normally
libcfitsio.a ) is located. Also look at the cmhog.def file. Both files will be
overwritten if you run configure though, so use the manual solution with care.

8.3 HDF4

It is also possible that your install fails due to an HDF4 problem (note that
CMHOG2 uses the older version 4 of HDF, not HDF5). Recently the binaries
that NCSA provides (e.g. for version 4.2.8) were compiled with SZIP compres-
sion enabled, although the default in the source code install is that it is disabled.
If you see an undefined reference to SZ encoder enabled, you will either have to
install the SZIP library, or re-install HDF4 with configure --without-szlib.
If you have NEMO installed, look at $NEMO/src/scripts/hdf.install. As an
example, for Ubuntu 12.04LTS, the system provided HDF4 libraries in /usr/lib
work. On a bind, you can use a version of HDF4 we keep in our CVS repos-
itory. See the Makefile for details, but essentially the command would be to
make hdf4 from the cmhog2 directory.

Note (2023) - compilation using HDF version 4.2.15-4 on Ubuntu22.04 worked.

8.4 autoconf

cmhog uses a file configure.ac3. The program autoconf produces a new ver-
sion of configure from this file, might you need an updated version. The
configure script will then transform the Makefile.in and cmhog.def.in into
their working counterpart. You can see, by editing files such a Makefile and
cmhog.in you run the risk of loosing your work on a subsequent installation.

3older versions of autoconf used configure.in



20

8.5 Benchmark

The cmhog benchmark is defined as running the standard PST95 model just
through the bar growth time, 0.1Gyr, on a small 67×40 grid (see cmhogin.bench).
This benchmark uses about 4.41665e6 zone cycles The results for a few popular
machines are summarized in Table 1.

• An Ultra-SPARC is about twice as efficient as an Intel chip.

• The Pentium-iii is about 10-15% more efficient per clock cycle than the
Pentium-iv.

• The Intel compiler is about 30-40% more efficient compared to the GNU
compiler (and it doesn’t matter if this is on an intel or AMD chip)

• There is no benefit from using a 512kB cache size

• The Alpha is the most efficient processor per clock cycle (native compiler)

• Piv code running on a Piii chip will slow down the code considerably

• Compiler version can make a big difference

ratio of gnu to intel compiler on a Piv/2.2

nphi gnu intel

20 4.10 3.31

40 26.43 21.08

80 201.9 161.32

154



21

Table 1: cmhog code benchmarks
Machine MHz cpu(sec) cpu/GHz K-zcs4 compiler/options

i7-1185G7 4800 1.50 7.2 2944 gfortran -g -O2
i7-3820 3600 3.39 12.2 1303 gfortran -g -O2
i7-3630QM 2400 3.58 8.6 1235 gfortran -g -O2
Intel i7 870 2930 5.22 846 g77 -g -O2

4.76 928
Core2Duo/T7300 2000 16.5 33.0 267.7 gfortran -O2
P-IV/512 3000 13.4 40.2 ifc -O2

10.4 31.2 423.5 ifc -O2 -xW -tpp7 -ipo -i dynamic
P-IV/512 2800 21.5 g77 -g -O2

52.6 -g
14.3 ifc -O2

P-IV/512 2200 26.3 57.8 76.4 g77 -g -O2
20.6 45.3 97.5 ifc -O
33.5 ifc -O2 -mp

P-IV 2000 29.4 58.8 75.1
P-IV 1800 32.4 58.3 75.8
P-IV 1600 42.2 104.6 g77 -g -O2
AMD 1600 23.1 37.0 119.4

17.6 28.2 156.6 ifc -O
P-III Coppermine 933 56.6 52.8 83.6

40.8 38.1 115.9 ifc -O
P-III 700 75.2 52.6 84.0
P-III/512 Katmai 600 88.7 53.2 83.0
P-III 600 91.1 54.7 80.7 (laptop)

65.0 39.0 113.2 ifc -O
70.8 pgf77 -O (version 3.2)
93.6 56.2 78.6 ifc -O compiled on Piv

P-III/512 Katmai 500 106.5 53.3 82.9
89.5 44.3 gcc 3.2.2 @ mdk91

P-II/MMX 233 321.0 74.8 13.7 g77 -g -O2
321.6 74.9 13.7 ifc -O

P-I 166 496.1 82.4 8.9 g77 -g -O2
G4 1400 29.7 148.8 g77 -g -O2
G4 800 60.5 - 79.9 g77 -g -O2
Alpha EV67 666 42.7 28.4 103.4 g77/gcc

23.8 15.8 185.5 fort/ccc -fast
Ultra-SPARC-IIi 440 - - g77 -g -O2

66.0 29.0 66.9 f77 -O
55.0 24.2 80.3 f77 -fast ??
44.0 19.4 100.4 f77 -fast

Ultra-SPARC 167 128.0 21.4 34.5 f77 -fast


