
NEMO USERS and PROGRAMMERS

GUIDE

Peter J. Teuben

Astronomy Department

University of Maryland
College Park, MD 20742

Version 3.2-MD

Summer 2005

Last document revised: August 12, 2005 by PJT

Copyright Notice/ Disclaimer

This package is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.

This package is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with this
package; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge,
MA 02139, USA.

Trademark Acknowledgments

UNIX is a registered trademark of AT&T. CRAY and UNICOS are registered trade-
marks of Cray Research Inc. Sun is a registered trademark and Sun Workstation a
trademark of Sun Microsystems Inc. PGPLOT is copyright by the California Insti-
tute of Technology (all rights reserved). Numerical Recipes is copyright by Numerical
Recipes Software. LINPACK is courtesy of SIAM.

Copyright c© 1987,2001,2004
Institute for Advanced Study, Princeton, NJ
University of Maryland, College Park, MD

all rights reserved

Contents

Table of Contents iii

List of Tables xii

List of Figures xiv

Disclaimer/No Warranty xvi

README xvii

Acknowledgments xxi

CONVENTIONS xxiii

I General Introduction and Concepts 1

1 Introduction 3

2 User Interface 5

2.1 Keywords . 5

2.1.1 Program Keywords . 5

2.1.2 System Keywords . 9

2.2 Interrupt to the REVIEW section 10

2.3 Advanced User Interfaces . 10

iii

iv CONTENTS

2.4 Help . 11

3 File structure 13

3.1 Binary Structured Files . 13

3.2 Pipes . 15

3.3 History of Data Reduction . 16

3.4 Table format . 17

3.5 Dynamically Loadable Functions 18

3.5.1 Potential Descriptors . 18

3.5.2 Bodytrans Functions . 18

3.5.3 Nonlinear Least Squares Fitting Functions 18

3.5.4 Rotation Curves Fitting Functions 19

4 Graphics and Image Display 21

4.1 The YAPP graphics interface . 21

4.2 General Graphics Display . 22

4.3 Image Display Interface . 22

II Cookbook 23

5 Examples 25

5.1 N-body experiments . 25

5.1.1 Setting it up . 25

5.1.2 Integration using hackcode1 27

5.1.3 Display and Initial Analysis 27

5.1.4 Movies . 30

5.1.5 Advanced Analysis . 33

5.1.6 Generating models . 33

5.1.7 Handling large datasets 34

5.2 Images . 35

CONTENTS v

5.2.1 Initializing Images . 35

5.2.2 Galactic Velocity Fields 37

5.2.3 Making an image from a snapshot 38

5.2.4 Galactic and Extragalactic objects 38

5.2.5 Extragalactic velocity �eld 39

5.2.6 Integrated Color Maps . 41

5.2.7 Extracting Rotation Curves from Galactic Velocity Fields 41

5.3 Tables . 44

5.3.1 Making an image from a table 45

5.4 Potential . 46

5.4.1 A few potentials . 47

5.4.2 How to build your own potential descriptors 47

5.5 Orbits . 49

5.5.1 Initializing . 49

5.5.2 Integration . 51

5.5.3 Display . 51

5.5.4 Analysis . 51

5.6 Exchanging data . 53

5.6.1 NEMO data �les in general 53

5.6.2 Snapshot Data . 54

5.6.3 Image Data . 55

III Programmers Guide 59

6 Introduction 61

6.1 The NEMO Programming Environment 61

6.2 The NEMO Macro Packages . 62

6.2.1 stdinc.h . 62

6.2.2 getparam.h . 64

vi CONTENTS

6.2.3 Advanced User Interface and String Parsing 66

6.2.4 Alternatives to nemo_main 67

6.2.5 �lestruct.h . 68

6.2.6 vectmath.h . 72

6.2.7 snapshots: get_snap.c and put_snap.c 73

6.2.8 history.h . 74

6.3 Building NEMO programs . 75

6.3.1 Manual pages . 76

6.3.2 Make�les . 77

6.3.3 An example NEMO program 79

6.4 Extending NEMO environment 79

6.5 Programming in C++ . 80

6.6 Programming in FORTRAN . 80

6.6.1 Calling NEMO C routines from FORTRAN 81

6.6.2 Calling FORTRAN routines from NEMO C 82

6.7 Debugging . 82

7 References 87

IV Appendices 89

A Setting Up Your Account 91

A.1 Static Setup . 91

A.2 Dynamic Setup . 92

A.3 Tailoring . 92

B User Interface 93

B.1 Program keywords . 93

B.2 System keywords . 93

B.2.1 Yapp_mongo . 96

CONTENTS vii

B.2.2 Yapp_sunview . 96

B.2.3 Yapp_pgplot . 96

B.2.4 Yapp_sm . 97

B.3 The REVIEW section . 98

B.4 Miriad . 99

B.4.1 Command and command line switches overview 103

C Shell Scripts 107

C.1 C Shell Scripts . 107

C.2 Parseargs C-shell scripts . 110

D Directory Structure 113

E Benchmarks 117

E.1 N-body integration . 117

E.1.1 Treecode . 117

E.1.2 Nbody0 . 119

E.2 Orbit integration . 120

F Potentials 121

F.1 bar83 . 121

F.2 bulge1 . 121

F.3 ccd . 122

F.4 cp80 . 122

F.5 dehnen . 123

F.6 dublinz . 123

F.7 expdisk . 123

F.8 �atz . 124

F.9 halo . 124

F.10 grow_plum . 124

F.11 grow_plum2 . 124

viii CONTENTS

F.12 harmonic . 124

F.13 hernquist . 124

F.14 hom . 125

F.15 hubble . 125

F.16 kuzmindisk . 125

F.17 isochrone . 126

F.18 ja�e . 126

F.19 log . 126

F.20 mestel . 126

F.21 miyamoto . 126

F.22 nfw . 127

F.23 null . 127

F.24 op73 . 127

F.25 plummer . 127

F.26 plummer2 . 128

F.27 rh84 . 128

F.28 rotcur0 . 128

F.29 rotcur . 128

F.30 teusan85 . 128

F.31 triax . 129

F.32 two�xed . 129

F.33 plummer4 . 129

F.34 vertdisk . 129

F.35 tidaldisk . 129

F.36 polynomial . 131

F.37 wada94 . 131

F.38 zero . 131

G Units and Coordinate Systems 133

CONTENTS ix

G.1 Coordinate Systems . 133

G.2 Units . 134

H GNU Scienti�c Library 135

H.1 Installation . 135

H.2 Features . 136

H.3 Future . 136

I Installation, updates and exporting 137

I.1 CVS - NEMO V3.2 . 137

I.2 Bootstrap . 138

I.3 Linux workstations - NEMO V3.0 and V3.1 138

I.3.1 tar . 139

I.3.2 make dirs . 140

I.3.3 make scripts . 141

I.3.4 More on scripts . 141

I.3.5 make install . 142

I.3.6 mknemo . 143

I.3.7 Documentation . 143

I.3.8 SUN only: mirtool, ds, movie's 145

I.4 Tailoring . 145

I.4.1 Replacement scripts in NEMOBIN 145

I.4.2 YAPP graphics device driver 145

I.4.3 Math libraries . 146

I.4.4 LOADOBJ dynamic object loader 146

I.4.5 Tailoring the NEMO kernel 146

I.4.6 isolation . 147

I.5 Exporting . 147

I.6 Small updates: tar import and export 148

I.6.1 make tar�le . 148

x CONTENTS

I.6.2 WEB maintenance . 150

I.7 Maintenance . 150

I.8 Other Libraries . 150

J Troubleshooting 153

J.1 List of Run Time Errors . 153

J.2 Environment Variables used by NEMO 157

J.3 Known Bugs and Features . 159

K Glossary 161

L Future, Present and Past 163

L.1 Some present problems . 163

L.1.1 Graphics . 163

L.1.2 System independent �le structure 164

L.1.3 File size - �oat vs. double 165

L.1.4 Some shortcuts and hints 165

L.2 Future . 166

L.3 New Features . 168

L.3.1 Release 3.3 . 168

L.3.2 Release 3.2 . 168

L.3.3 Release 3.0 . 168

L.3.4 Release MD-2.5 . 168

L.3.5 Release MD-2.4 . 169

L.3.6 Release MD-2.3 . 169

L.3.7 Release MD-2.2 . 169

L.3.8 Release MD-2.1 . 169

L.3.9 Release MD-2.0 . 170

L.3.10 Release MD-1.4 . 170

L.3.11 Release MD-1.3 . 170

CONTENTS xi

L.3.12 Release MD-1.2 . 171

L.3.13 Release MD-1.1 . 171

L.4 HISTORY of NEMO . 173

Index 175

xii CONTENTS

List of Tables

5.1 Precompiled bodytrans expressions 29

6.1 source: snap�rst.c . 83

6.2 source: hello.c . 84

6.3 source: make�le . 85

6.4 testf2c.f . 86

B.1 Miriad shell command overview 104

B.2 Miriad shell command line switches 105

D.1 Overview of the $NEMO/ tree . 114

D.2 Some pieces of the $NEMO/src/ tree (this branch is o�cially ex-
ported) . 115

D.3 Some pieces of the $NEMO/usr/ tree (this branch is o�cially not
exported) . 116

E.1 treecode benchmarks . 118

E.2 N-Body0 benchmarks . 119

I.1 Installation created �les . 141

I.2 User scripts . 142

I.3 Maintenance scripts . 142

I.4 Small export tar �les . 149

I.5 Optional Libraries NEMO can use 151

xiii

xiv LIST OF TABLES

List of Figures

2.1 Hackcode1: default initial conditions 7

5.1 Encounter: initial conditions . 27

5.2 Position-Velocity diagram of a galactic disk 39

5.3 Velocity �eld of a galactic disk 41

5.4 Sample orbit 1 (orb1.out) . 51

5.5 Surface of Section for sample orbit 1 (orb1.long) 52

G.1 Example galaxy disks . 134

xv

xvi LIST OF FIGURES

DISCLAIMER/NO
WARRANTY

Because the present version of NEMO is passed around free of charge, we provide
absolutely no warranty whatsoever.

You are of course free to pass this package on to your friends and enemies, but we
really prefer to receive a mailing address of/from that new user. This is not only to
keep us informed of any new users, but also to enable to send out information about
updates.

While we very much appreciate receiving bug reports1, presently we do not have anyone
o�cially assigned to the task of maintaining NEMO. Therefore we cannot guarantee
speedy reply.

If the above has not been enough of a disclaimer, let us say that this version of NEMO
is still a preliminary version of what might once become a �real� system with the usual
support facilities. We strongly discourage usage of this system if you are not in regular
contact with the distributor(s), simply because we feel that the system hasn't been
su�ciently tested yet. At the same time, we want to make NEMO available as soon
as we can, so, voilà: all these disclaimers.

The name NEMO: originally we had set up directories owned by "nobody", however
it turned out that this is already a name with a predetermined functionality in UNIX.
Subsequently the latin analog, nemo, was adopted2. Not meant to be used as an
acronym, we owe the following one to Luis Aguilar: Not Everyone Must Observe.
Another nice one is hidden in this manual, which we leave as an exercise to the reader.

1nemo@astro.umd.edu
2It's greek analog is KEITAO, Zeno is a NEMO descendant

xvii

xviii LIST OF FIGURES

README

In order to prevent disappointment and frustration this section should be care-
fully read and understood before you endeavor into NEMO.

You can use the list below as a checklist, it will help you to decide if NEMO is
really the right way for you to solve your particular problem. In the end it may
be helpful to have the manual pages programs(8NEMO) and/or index(1NEMO)
for names of speci�c programs and utilities that you may want to use. The items
in the list below are in approximate order of importance, the most important
ones listed �rst. The further down the list you come, the easier it will be for
you to get along with the NEMO package.

• understand NEMO is nothing more than an extension of the UNIX envi-
ronment, and that you know how to modify your default UNIX environ-
ment to be able to run NEMO programs (See Appendix A). This generally
makes it relatively easy to use NEMO in other environments and packages.

• understand the basic user interface: programs have a 'keyword=value'
argument structure, and that there are 'program' and 'system' key-
words. System keywords can generally be set �xed by an equivalent envi-
ronment variable (Chapter 2, Appendix B)

• realize NEMO is mainly an N-body package, with utilities to create stel-
lar systems, evolving them, and a large variety of analysis and display
programs. However, for a number of problems an N-body system can be
e�ectively and e�ciently used to simulate a completely di�erent physical
situation. There are interfaces to create/convert data in/to image format,
and export them in FITS format (Chapter 5). A small amount of orbit
and table manipulation utilities are also available. (See also Chapter 3).

• understand the basic workings of a UNIX shell; how to write shell scripts
in which programs are combined in a modular way, and to automate pro-
cedures. For this reason NEMO programs are also geared towards batch
usage. (see any introductory UNIX book and Appendix C)

• understand that data is stored in binary format and in a general hierar-
chical/ structured �le format. The data can always be viewed in human

xix

xx LIST OF FIGURES

readable form with the program tsf(1NEMO). Depending on the kind of
data, the format is structured in a speci�c way, e.g. snapshots, images,
orbits. Only problem speci�c programs can read such data�les (See Chap-
ter 3).

• you know about the graphics interface yapp (see also Chapter 4). Make
sure you understand the local NEMO implementation how to get graphics
output to for example screen and printer. Sometimes they are hidden in
one device driver, and the yapp= system keyword is then used to select
the device (e.g. themongo and pgplot yapp drivers), or programs are linked
with di�erent device drivers. In this case, the program name will have a
underscore and the device name appended, such as snapplot, snapplot_cg
and snapplot_ps. (See Chapter 4).

• realize that NEMO can be extended to suit your own needs. It is fairly
easy to write new programs or even de�ne a new data structure (as was
done for snapshots, images and orbits). Do realize however that the main
language used is C and support for linking FORTRAN and C is minimal
and system dependant. (See Chapter 6).

• you realize what it means to install NEMO if this has not been done yet.
You need to carefully read Appendix I in detail; any experience you have
had with the UNIX shell, and utilities like �make� and �autoconf� will be
useful.

More information

The manual that you are reading here is in LaTeX format and should be in
$NEMO/text/manuals3. Other information on NEMO can be found in the fol-
lowing places:

• manual pages, in $NEMO/man and below, using the UNIX man or NEMO
nemoman/manlaser commands. For a graphical interface programs like
tkman and gman can be very useful (hypertext) browsers of manual page.
We also automatically maintain a fully hyperlinked version formatted in
html.

• The README �le in NEMO's home directory will always contain �last minute�
information that has perhaps not found its way into this manual yet.

• The �le faq.tex in $NEMO/text lists Frequently Asked Questions, and possibly
other �les in that directory.

• A summary sheet summary.tex in $NEMO/text overviews NEMO's usage.

3The full NEMO directory structure is outlined in Appendix D

LIST OF FIGURES xxi

• survival.texi, a short texinfo introduction with basic survival techniques
to get around.

• The NEMO home page, currently at http://www.astro.umd.edu/nemo/,
contains many pointers to a variety of helpful pages, and sometimes con-
tradicts information written down in this manual.

• The ManyBody compendium, putting together an introduction to NEMO,
starlab and other N-body software, originally written for the �rst N-body
School (Strasbourg, 2004).

xxii LIST OF FIGURES

ACKNOWLEDGMENTS

Without any doubt Josh Barnes deserves the credit for the work that lies in front
of you. Most of the visible parts, such as the user interface and the �lestructure,
were originally developed by Josh Barnes, in collaboration with Piet Hut and
Peter Teuben at the Institute for Advanced Study during the 1986/87 academic
year. At the initial stages of this project we have also bene�tted from contri-
butions by Lyman Hurd, Eric Roberts, Mark Ross, and Panayotis Skordis. You
will also �nd many ideas originally developed in NEMO in derived and evolved
products such as Starlab and ZENO.

Of course any package will only improve when it is used. Numerous people, in
particular the University of Maryland graduate students and Stefano Casertano
have su�ered through several stages of testing. Without them and their com-
plaints we would never be where we are now. Needless to say, we need more
complaints! We would also like to express our sincere thanks to Sverre Aarseth,
for his hard work on the industry standard series "NBODY*", which has also
become a part of NEMO, and Lars Hernquist, for providing a fortran version of
the treecode. Mark Bellon has contributed his optimized C version of treecode
which speci�cally runs well on some parallel processors. The GIPSY and MIRIAD

programming groups are also continuesly supplying us with software. Being one
of the early guinea pigs of the C version of Numerical Recipes we have also ben-
e�tted from some code from Numerical Recipes Software. Finally, the Usenet

public domain has proven to be of great value, and you will �nd several utilities
in e.g. $NEMO/src/tools and $NEMO/usr/lib. There are too many to be all
acknowledged at this place, the manual pages and/or source code will contain
appropriate references.

P.T.

College Park, Maryland
November, 1991
August, 1994
June, 2005

xxiii

xxiv LIST OF FIGURES

Conventions used in this
Manual

The following typographical conventions are used in this manual:

Text in italic, such as image(3NEMO), mean a reference to a UNIX manual
page. In this case the command

% man 3 image

would bring up the manual page $NEMO/man/man3/image.3. In some case (like
actually this one), the 3 can be left out. See also man(1).

Text in verbatim are used to display the contents of source �les, or sample
interactive sessions. The latter come in a few categories, where the system
prompt denotes the system you're on. Currently you may see samples from a
UNIX shell (csh), where the command is preceded by the percent (%) symbol,
and the bourne shell (sh) where the dollar ($) is used4:

% ls

$ ls

Text in boldface is used to denote UNIX environment variables.

4on a rare occasion you may even �nd a VMS DCL example in this case

xxv

xxvi LIST OF FIGURES

Part I

General Introduction and
Concepts

1

Chapter 1

Introduction

NEMO is a collection of programs, running under a standard UNIX shell1, ca-
pable of running various stellar dynamical codes and related utilities (initializa-
tion, analysis, gridding, orbits). It can be thought of as a collection of various
�groups� (packages) of programs, a group being de�ned by their common �le
structure. In addition, a common user interface is de�ned with which the user
communicates with a program. User interfaces will be described in much more
detail in the next chapter and Appendix B.

In order to run NEMO programs, your UNIX environment has to be modi�ed
slightly. This is normally done in the form of a few additions to a startup �le
(.cshrc or .login if you use the C-shell). Appendix A gives a full description.

Let us �rst give you an overview of the various �groups� of programs, as they
clearly show the structure of NEMO to a �rst time user:

The N-body group is de�ned by a common �le structure of �snapshots�. In
this group we �nd various programs to create N-body systems (spherical, disk),
methods to compute the gravitational �eld (softened Newtonian, hierarchical,
Fourier expansion), and time-integrators (leapfrog, Runge-Kutta). Many utili-
ties exist to manipulate, analyze and display these data.

The orbit group is de�ned by a common �le structure of �orbits� . It is mainly
intended to calculate the path of an individual orbit in a static potential and
then analyze it. This group is closely related to the before mentioned N-body
group, and utilities in both groups can interact with each other. For example,
it is possible to freeze the potential of an N-body snapshot, and calculate the
path of a speci�c star in it, now conserving energy exactly. Or to extract the
path of a selected star, and extract an orbit from it.

The image group is de�ned by a common �le structure of �images� , i.e. two

1We will assume some basic knowledge of the UNIX operating system

3

4 CHAPTER 1. INTRODUCTION

dimensional rectangular pixel arrays with a 'value' de�ned for every pixel. Actu-
ally an image may also have a third axis, although this axis often has a slightly
di�erent meaning (e.g. Doppler velocity). It is possible to generate arbitrary
two-(and three-) dimensional images from snapshots, FITS �les of such images
can be created, which can then be exported to other familiar astronomical data
reduction packages. There exists a variety of programs in the astronomical
community to manipulate data through FITS format.

The table group appears quite commonly among application programs in all of
the above mentioned groups. Most of the time it is a simple ASCII �le in the
form of a matrix of numbers (like a spreadsheet). A few programs in NEMO can
manipulate, display and plot such table �les, although there are many superior
programs and packages outside of NEMO available with similar functionality.
It is mostly through these table �les that we leave the NEMO environment, and
persue analysis in a di�erent environment/package. The obvious advantage of
storing tables in binary form is the self-documenting nature of NEMO's binary
�les. For historical reasons, most tables are displayed and created in ASCII,
though you will �nd a few binary tables in NEMO.

More groups and intermediate �le structures are readily de�ned, as NEMO is
also an excellent development system. We encourage users to de�ne their own
(or extend existing) data structures as the need arises. In Chapter 6 we will
detail some 'rules' how to incorporate/add new software into the package, and
extend your NEMO environment.

The remaining chapters of this �rst part of the manual outline various concepts
that you will �nd necessary to work with NEMO. Chapter 2 outlines the user
interface (commandline, shells etc.), details are deferred to Appendix B. Chap-
ter 3 explains how data is stored on disk and can be manipulated, including the
concept of function descriptors in NEMO. Chapter 4 details how data can be
graphically displayed, either using NEMO itself or external programs.

The second part of the manual is a cookbook: Chapter 5 gives a variety of
examples of use.

The third part of the manual is the programmers manual: Chapter 6 is for the
more adventurous user who wants to modify or extend NEMO.

The last part of the manual are Appendices with a large variety of reference
information.

Chapter 2

User Interface

A NEMO program is invoked just as any other application program under the
operating system. Of course you must have modi�ed your shell environment
(see Appendix A on how to modify your account).

In the �rst section the keyword interface is explained. Subsequently, we will
explain some of the more advanced concepts of this user interface, which can be
skipped on �rst reading without loosing any essentials. Some of these advanced
features may not even be available in your local implementation. The last
section discusses the overall documentation system in NEMO, and how to get
di�erent types of help. Appendix B serves as a reference guide to the various
user interfaces.

2.1 Keywords

2.1.1 Program Keywords

The most basic user interface is formed by the command line interface. Every
NEMO program accepts input through a list of so-called program keywords,
constructed as 'keyword=value' string pairs on the commandline. We shall go
through a few examples and point out a few noteworthy things as we go along.
The �rst example1:

1% hackcode1 out=r001.dat

1from here on the % will denote the prompt of the operating system, anything after that
on that line you type - subsequent lines without a prompt are output from the program. The
number preceding is an identi�cation number.

5

6 CHAPTER 2. USER INTERFACE

Hack code: test data

nbody freq eps tol

128 32.00 0.0500 1.0000

options: mass,phase

tnow T+U T/U nttot nbavg ncavg cputime

0.000 -0.2943 -0.4940 4363 15 18 0.01

cm pos -0.0000 -0.0000 -0.0000

cm vel 0.0000 0.0000 -0.0000

particle data written

tnow T+U T/U nttot nbavg ncavg cputime

0.031 -0.2940 -0.4938 4397 15 18 0.01

cm pos 0.0000 0.0000 -0.0000

cm vel 0.0001 0.0001 -0.0000

tnow T+U T/U nttot nbavg ncavg cputime

0.062 -0.2938 -0.4941 4523 16 18 0.02

cm pos 0.0000 0.0000 -0.0000

cm vel 0.0002 0.0002 0.0000

...

will integrate an (automatically generated) stellar system with 128 particles for
64 time steps. If your CPU is very slow, abort the program with <control>-C

and re-run it with fewer particles:

....

<Control>-C

REVIEW called, enter your command:

REVIEW|hackcode1> quit

2% hackcode1 out=r001.dat nbody=32 > r001.log

Fatal error [hackcode1] stropen in hackcode1: file "r001.dat" already exists

3% rm r001.dat

4% hackcode1 out=r001.dat nbody=32 > r001.log

This example already shows a few peculiarities of the NEMO user interface.
First of all, an interrupt might have thrown you into the REVIEW section: the
quit command is needed to get you back to the parent shell. This REVIEW
section may not have been compiled into your user interface, in which case not
to worry. The second peculiarity is shown by the line starting with �###�. It

2.1. KEYWORDS 7

Figure 2.1: Initial conditions for hackcode1

is generated by the fatal error routine, which immediately2 aborts the program
with a message to the terminal, even if the normal output was diverted3 to a
log-�le, as in this example. The error shows that in general NEMO programs do
not allow �les to be overwritten, and hence the r001.dat �le, which was already
(partially) created in the previous run, must be deleted before hackcode1 can
be re-run with the same keywords. The data�le, r001.dat, is in a peculiar
binary format, which we shall discuss in the next chapter.

Now, plotting the �rst snapshot of the run can be done as follows:

5% snapplot in=r001.dat times=0

It plots an X-Y projection of the initial conditions from the data �le r001.dat
at time 0.0. Your display will hopefully look something like the one displayed
in Figure 2.1.

There are many more keywords to this particular program, but they all have
sensible default values and don't have to be supplied. However, an invocation
like

6% snapplot

will generally result in an error message, and shows you the minimum list of
keywords which need a value. snapplot will then output something like

Insufficient parameters, try keyword 'help=', otherwise:

Usage: snapplot in=??? ...

plot particle positions from a snapshot file

which already suggests that issuing the help= keyword will list all possible
keywords and their associated defaults:

7% snapplot help=

results in something like:4

2There are ways around this, see the error= keyword described later in this section
3Technically, it was written to the standard error output channel, commonly called stderr

in UNIX
4Your local VERSION will probably look a little di�erent.

8 CHAPTER 2. USER INTERFACE

snapplot in=??? times=all xvar=x xlabel= xrange=-2.0:2.0

yvar=y ylabel= yrange=-2.0:2.0 visib=1 psize=0

fill_circle=t frame= VERSION=1.3f

As you see, snapplot happens to be a program with quite an extensive param-
eter list. Also note that 'help' itself is not listed in the above list of program
keywords because it is a system keyword (more on these later).

There are a few �short-cut� in this user interface worth mentioning at this stage.
First of all, keywords don't have to be speci�ed by name, as long as you specify
values in the correct order, they will be associated by the appropriate keyword.
The order of program keywords can be seen with the keyword help=. The mo-
ment you deviate from this order, or leave gaps, all values must be accompanied
by their keywords, i.e. in the example

8% snapplot r001.dat 0,2 xrange=-5:5 yrange=-5:5 "visib=i<10"

the second argument 0,2 binds to times=0,2; but if a value "i<10" for visib
(the keyword immediately following yrange=) would be needed, the full "visib=i<10"
would have to be supplied to the command line, anywhere after the �rst 0,2
where the keywords are explicitly named. Also note the use of quotes around
the visib= keyword, to prevent the UNIX shell from interpreting the < sign for
I/O redirection. In this particular case double as well as single quotes would
have worked.

There are two other user interface short-cuts worth knowing about. . The
macro-include or keyword include allows you to pre�x an existing �lename
with the @-symbol, which causes the contents of that �le to become the keyword
value. In UNIX the following two are nearly equivalent (treatment of multiple
lines may cause di�erences in the subsequent parsing of the keyword value):

9% program a=@keyfile

10% program a="`cat keyfile`"

Also useful is the reference include , which uses the $-symbol to pre�x an-
other program keyword, and causes the contents of that keyword to be included
in-place. An obvious warning is in place: you cannot use recursion here. So, for
example,

11% program a=$b b=$a <---- illegal !!!

will probably cause the user interface to run out of memory or return something
meaningless. Also, since the $-symbol has special meaning to the UNIX shell,
it has to be passed in a special way, for example

2.1. KEYWORDS 9

12% program a=5 b=3+\$a

13% program a=5 'b=3+$a'

are both equivalent.

2.1.2 System Keywords

As just mentioned before, there are a �xed set of keywords to every NEMO
program which are the �hidden� system keywords; their values are de�ned
automatically for the user by the user-interface routines from environment vari-
ables or, when absent, sensible preset defaults. They handle certain global
(system) features and are not listed through the 'help=' keyword. Of course
their values can always be overridden by supplying it as a system parameter on
the command line. In summary, the system keywords are:

• The help= keyword itself, gives you a list of all available keywords to
this speci�c program but can also aid you in command completion and/or
explanation of keywords.

• The debug= keyword lets you upgrade the debug output level. This may
be useful to check proper execution when a program seemingly takes too
long to complete, or to trace weird errors. Output is to stderr though.
Default level is 0.

• The yapp= keyword lets you (re)de�ne the graphics output device. Usually
no default.

• The error= keyword allows you to override a speci�ed number of fatal
error calls. Not adviced really, but it's there to use in case you really
know what you're doing5 Default is 0.

• The review= keyword jumps the user into the REVIEW section before the
actual execution of the NEMO program for a last review of the parameters
before execution starts. (see also next section).

For a more detailed description of the system keywords and all their options see
Appendix B. The actual degree of implementation of the system keywords can
be site dependent. Use the help=
? argument to any NEMO program to glean into the options the user interface
was compiled with. Recent updates can also be found in NEMO's online manual
pages, getparam(3NEMO).

5bypassing existence of an output �le is a very common use

10 CHAPTER 2. USER INTERFACE

2.2 Interrupt to the REVIEW section

NEMO programs are generally not interactive, they are of the so-called � load-
and-go� type, i.e. at startup all necessary parameters are supplied either through
the commandline, or, as will be described later, a keyword �le or even a combi-
nation thereof. The actual program is then started until it's all done. There is
no feedback possible to the user. This is particularly convenient when combining
programs into a script or batch type environments.

There are of course a few exceptions. Certain graphics interfaces require the
user to push a button on the keyboard or click the mouse to advance to a next
frame or something like that; a few very old NEMO programs may still get their
input through user de�ned routines (they will become obsolete).

Depending on how the user interface on your system has been compiled, NEMO
programs can be interrupted6 to go into the REVIEW section during, or even
optionally at the start of the execution of the program. The program pauses
here for user interaction.

The REVIEW� prompt appears and the user can interact with the program and
reset keywords. The program can also be continued or gracefully aborted, and
other programs can be run in the mean time. In Appendix B.3 an overview of
all the commands and their options are given in more detail.

It should be remarked though that the program must be written in a certain
way that resetting the value of the keyword also a�ects the actual �ow of the
program. Although this is always true for the system keywords (help, yapp,

debug etc.), it is not guaranteed7 for the program de�ned keywords (the ones
you see when the help= keyword is used). The documentation should explain
how to handle such situations, however in most current situations modifying
a program keyword will not a�ect the �ow of the program. A good example
would be a program that iterates, and is given a new tolerance criterion or new
initial conditions.

The REVIEW section is mostly useful to interrupt a quiet program that seems
to take to long, and increase the debug level.

2.3 Advanced User Interfaces

The command-line interface, as we described it above, makes it relatively straight-
forward to �plug� in any other front-end as a new user interface with possibly
a very di�erent look-and-feel. In fact, the command-line interface is the most
primitive front-end that we can think of: most host shell interpreters can be

6UNIX programs can be interrupted with (control-backslash)
7In fact, this is hardly anywhere the case

2.4. HELP 11

used to perform various short-cuts in executing programs. Modern interactive
UNIX shells like tcsh and bash can be used very e�ciently in this mode. In
batch mode shell scripts, if used properly, can provide a very powerful method of
running complex simulations. Other plug-compatible interfaces that are avail-
able are mirtool and miriad, described in more detail in Appendix ?? and
B.4 There was also a Khoros (cantata, under khoros V1) interface8 available,
but this product is not open source anymore. Lastly, lets not forget scripting
languages like python, perl and ruby. Although the class UNIX (c)sh shell is
very WYSIWYG, with a modest amount of investment the programmability of
higher level scripts can give you a very powerful programming environment.9

2.4 Help

The HELP system in NEMO is manyfold.

• Inline help, using the help= system keyword, is available for each program.
Since this is compiled into the program, you can copy a program to another
system, without all the NEMO ssystem support, and still have a little bit
of help.

• manual pages for programs, functions, and �le formats, all in good old
UNIX tradition. All these �les live in $NEMO/man and below. Several
interfaces to the manual pages are now available:

� good old UNIX man(1), but make sure the MANPATH environ-
ment variable includes the $NEMO/man directory. The manlaser script
can print out the manual pages in a decent form.

� The X-windows utility xman(1) provides a point-and-click interface,
and also has a decent whatis interface. No hypertext though, but
very fast since it directly interprets the cat �les.

� The Tcl/Tk X-windows utility tkman formats manual pages on-the-
�y and allows hypertextual moving around. and has lots of good
options, such as dynamic manipulation of theMANPATH elements,
a history and bookmark mechanism etc.

� Under GNOME the gman formats tool has nice browsing capabilities.

� The html formatted manual pages. Has limited form of hypertext,
but contains the links to general UNIX manual pages, if properly ad-
dressed. Since installation is a bit tricky10, the home base (http://www.astro.umd.edu/nemo/
is your best bet to start surfing).

8See also http://www.khoral.com for their new release
9It is envisioned NEMO will - perhaps via a SWIG, or-like, environment - support such an

environment
10really: not documented

12 CHAPTER 2. USER INTERFACE

• This manual, the The NEMO User and Programmers Guide, contains
information on a wide level, aimed at beginners as well as advanced users.
The manual is also available in html.

Chapter 3

File structure

This chapter gives an overview of the �le structure of persistent data1. Most
of the data handled by NEMO is in the form of a specially designed2 XML-like
binary format, although exceptions like ASCII �les/tables will also be discussed.
Ample examples illustrate creation, manipulation and data transfer. We close
this chapter with a few examples of function descriptions, a dataformat that
make use of the native object �le format of your operating system (a.out(5) and
dlopen(3)).

3.1 Binary Structured Files

Most of the data �les used by NEMO share a common low level binary �le
structure, which can be viewed as a sequence of tagged data items. Special
symbols are de�ned to group these items hierarchically into sets. Data items
are typically scalar values or homogeneous arrays constructed from elementary
C data types, but the programmer can also add more complex structures, such
as C's struct structure de�nition, or any user de�ned data structure. In this
last case tagging by type is not possible anymore, and support for a machine in-
dependent format is not guaranteed. Using such constructs is not recommended
if the data needs to be portable accross platforms.

The hierarchical structure of a binary �le in this general format can be viewed
in human-readable format at the terminal using a special program, tsf ("type
structured �le"). Its counterpart, rsf ("read structured �le"), converts such
human-readable �les (in that special ASCII Structured File format, or ASF)

1Programmers are always free to choose any format they like in memory - this is usally
hidden from the users. What we mean here is the disk format. The popular memory (object)
models, and how they interact with persistent data on disk, are discussed in Chapter 6

2note this was back in 1986, well before XML was conceived

13

14 CHAPTER 3. FILE STRUCTURE

into binary structured �les (BSF). In principle it is hence possible to transfer
data �les between di�erent types of computers using rsf and tsf (see examples
in Section 5.6). 3

Let us start with a small example: With the NEMO program mkplummer we
�rst create an N-body realization of a spherical Plummer model:

1% mkplummer i001.dat 1024

Note that we made use of the shortcut that out= and nbody= are the �rst two
program keywords, and they were assigned their value by position rather than by
associated name. We can now display the contents of the binary �le i001.dat
with tsf:

2% tsf i001.dat

char Headline[33] "set_xrandom: seed used 706921861"

char History[36] "mkplummer i001.dat 1024 VERSION=2.5"

set SnapShot

set Parameters

int Nobj 01750

double Time 0.00000

tes

set Particles

int CoordSystem 0201402

double Mass[1024] 0.00195313 0.00195313 0.00195313

0.00195313 0.00195313 0.00195313 0.00195313 0.00195313

0.00195313 0.00195313 0.00195313 0.00195313 0.00195313

0.00195313 0.00195313 0.00195313 0.00195313 0.00195313

. . .

double PhaseSpace[1024][2][3] 4.92932 0.425103 -0.474249

0.342025 -0.112242 4.60796 -0.00388599 -0.389558 -0.958787

0.220561 0.213904 3.47561 0.0176012 1.22146 -0.903484

-0.705422 4.26963 -0.263561 1.04382 -0.199518 -0.480749

. . .

tes

tes

This is an example of a data-�le from the N-body group, and consists of a
single snapshot at time=0.0. This snapshot, with 1024 bodies with double pre-
cision masses and full 6 dimensional phase space coordinates, totals 57606 bytes,
whereas a straight dump of only the essential information would have been 57344
bytes, a mere 0.5% overhead. The overhead will be larger with small amounts
of data, e.g. diagnostics in an N-body simulation, or small N-body snapshots.

3Note however that currently NEMO's binary �les have some limited support for machine-
independancies, e.g. simple endian swap. Some portability notes about this can be found in
Appendix L.1.2

3.2. PIPES 15

Besides some parameters in the 'Parameters' set, it consists of a 'Particles'
set, where (along the type of coordinate system) all the masses and phase space
coordinates of all particles are de�ned. Note the convention of integers starting
with a '0' in octal representation. This is done for portability reasons.

A remark about online help: NEMO also uses the man(5) format for more
detailed online help, although the inline help (system help= keyword) is most
of the times su�cient enough to remind a novice user of the keywords and their
meaning. The man command is a last resort, if more detailed information and
examples are needed.

3% man tsf

Note that, since the online manual page is a di�erent �le from the source code,
information in the manual page can easily get outdated, and the inline (help=)
help, although very brief, is more likely to be up to date since it is generated
from the source code (executable) itself:

4% tsf help=h

in : input file name [???]

maxprec : print nums with max precision [false]

maxline : max lines per item [4]

allline : print all lines (overrides maxline) [false]

indent : indentation of compound items [2]

margin : righthand margin [72]

item : Select specific item []

xml : output data in XML format? (experimental) [f]

octal : Force integer output in octal again? [f]

VERSION : 29-aug-02 PJT [3.1]

3.2 Pipes

In the UNIX operating system pipes can be very e�ectively used to pass infor-
mation from one process to another. One of the well known textbook examples
is how one gets a list of misspelled (or unknown) words from a document:

% spell file | sort | uniq | more

NEMO programs can also pass data via UNIX pipes, although with a slightly
di�erent syntax: a dataset that is going to be part of a pipe (either input or
output) has to be designated with the - (�dash�) symbol for their �lename. Also,
and this is very important, the receiving task at the other end of the pipe should
get data from only one source of course. If the task at the sending end of the pipe

16 CHAPTER 3. FILE STRUCTURE

wants to send binary data over that pipe, but in addition the same task would
also write �normal� standard output, the pipe would be corrupted with two
incompatible sources of data. An example of this is the program snapcenter.
The keyword report must be set to false instead, which is actually the default
now. So, for example, the output of a previous N-body integration is re-centered
on it's center of mass, and subsequently recti�ed and stacked into a single image
as follows:

% snapcenter r001.dat . report=t | tabplot - 0 1,2,3

% snapcenter r001.dat - report=f |\

snaprect - - 'weight=-phi*phi*phi' |\

snapgrid - r001.sum stack=t

If the keyword report=f would not have been set properly, snaprect would
not have been able to process it's convoluted input. Some other examples are
discussed in Section 5.6.1.

3.3 History of Data Reduction

Most programs4 in NEMO will automatically keep track of the history of their
data-�les in a self-describing and self-documenting way. If a program modi�es
an input �le and produces an output �le, it will prepend the command-line with
which it was invoked to its data history. The data history is normally located
at the beginning of a data �le. Comments entered using the frequently used
program keyword headline= will also appear in the history section of your data
�le.

A utility, hisf can be used to display the history of a data-�le. This utility can
also be used to create a pure history �le (without any data) by using the optional
out= and text= keywords. Of course tsf could also be used by scanning its
output for the string History or Headline:

5% tsf r001.dat | grep History

which shows that tsf, together with it's counterpart rsf has virtually the same
functionality as hisf. 5

4notable exceptions are basic programs like tsf, rsf, csf and hisf
5HISTORIC NOTE: To prevent data �les having a history written into them an environ-

ment variable HISTORY must be set to 0. This dates back from older times when not all
programs could properly handle data �les with embedded history items properly. Also note
there is no associated system keyword with HISTORY. It is expected that this feature will
disappear, i.e. history is always forcefully written into the data �les, unless the user interface
(getparam.o in libnemo.a) was explicitly compiled with the HISTORY disabled.

3.4. TABLE FORMAT 17

3.4 Table format

Many programs are capable of producing standard output in (ASCII) tabu-
lar format. The output can be gathered into a �le using standard UNIX I/O
redirection. In the example

6% radprof r001.dat tab=true > r001.tab

the �le r001.tab will contain (amongst others) columns with surface density
and radius from the snapshot r001.dat. These (ASCII) 'table' �les can be used
by various programs for further display and analysis. NEMO also has a few
programs for this purpose available (e.g.. tabhist for analysis and histogram
plotting, tablsqfit for checking correlations between two columns and tabmath
for general table handling). The manual pages of the relevant NEMO programs
should inform you how to get nice tabular output, but sometimes it is also
necessary to write a shell/awk script or parser to do the job. Note: the tab=

keyword hints at the existence of such features.

A usefull (public domain) program redir(1NEMO) has been included in NEMO6

to be able split the two standard UNIX output channels stdout and stderr to
separate �les.

7% redir -e debug.out tsf r001.dat debug=2

would run the tsf command, but redirecting the stderr standard error output
to a �le stderr.out. There are ways in the C-shell to do the same thing, but
they are clumsy and hard to remember. In the bourne shell (/bin/sh) this is
accomplished much easier:

7$ tsf r001.dat debug=2 2>debug.out

One last word of caution regarding tables: tables can also be used very e�ectively
in pipes, for example take the �rst example, and pipe the output into tabplot

to get a quick look at the pro�le:

8% snapprint r001.dat r | tabhist -

If the snapshot contains more than 10,000 points, tabhist cannot read the
remainer of the �le, since the default maximum number of libes for reading
from pipes is set by a keyword nmax=10000. To properly read all lines, you have
to know (or estimate) the number of lines. In the other case where the input
is a regular �le, table programs are always able to �nd the correct amount to
allocate for their internal bu�ers by scanning over the �le once. For very large
tables this does introduce a little extra overhead.

6see also the tpipe tool

18 CHAPTER 3. FILE STRUCTURE

3.5 Dynamically Loadable Functions

A very peculiar data �le format encountered in NEMO is that of the function
descriptors. They present themselves to the user through one or more keywords,
and in reality point to a compiled piece of code that will get loaded by NEMO
(using loadobj(3NEMO)). We currently have 4 of these in NEMO:

3.5.1 Potential Descriptors

The potential descriptor is used in orbit calculations and a few N-body pro-
grams. These are actually binary object �les (hence extremely system depen-
dent!!), and used by the dynamic object loader during runtime. Potentials are
supplied to NEMO programs as an input variable (i.e. a set of keywords7). For
this, a mechanism is needed to dynamically load the code which calculates the
potential. This is done by a dynamic object loader that comes with NEMO. If a
program needs a potential, and it is present in the default repository ($POTPATH
or $NEMOOBJ/potential), it is directly loaded into memory by this dynamic
object loader. If only a source �le is present, e.g. in the current directory, it is
compiled on the �y and then loaded. The source code can be written in C or
FORTRAN. Rules and more information can be found in potential(3NEMO) and
potential(5NEMO) The program potlist(1NEMO) can be used to test potential
descriptors. See Section 5.4 for examples.

3.5.2 Bodytrans Functions

Another family of object �les used by the dynamic object loader are the body-
trans(5NEMO) functions. These were actually the �rst one of this kind in-
troduced in NEMO. They are functions generated from expressions containing
body-variables (mass, position, potential, time, ordinal number etc.). They
frequently occur in programs where it is desirable to have an arbitrary expres-
sion of body variables e.g. plotting and printing programs, sorting program
etc. Expressions which are not in the standard repository (currently $BTRPATH

or $NEMOOBJ/bodytrans) will be generated on the �y and saved for later use.
The program bodytrans(1NEMO) is available to test and save new expressions.
Examples are given in Section 5.1.3, a table of the precompiled ones are in
Table 5.1.

3.5.3 Nonlinear Least Squares Fitting Functions

The program tabnllsqfit can �t (linear or non-linear, depending on the pa-
rameters) a function to a set of datapoints from an ASCII table. The keyword

7Normally called potname=, potpars= and potfile=, but see also rotcurves

3.5. DYNAMICALLY LOADABLE FUNCTIONS 19

fit= describes the model (e.g. a line, plane, gaussian, circle, etc.), of which a
few common ones have been pre-compiled with the program. In that sense this
is di�erent from the previous two function descriptors, which always get loaded
from a directory with precompiled object �les. The keyword load= can be used
to feed a user de�ned function to this program. The manual page has a lot more
details.

3.5.4 Rotation Curves Fitting Functions

Very similar to the Nonlinear Least Squares Fitting Functions are the Rotation
Curves Fitting Functions, except they are peculiar to the 1- and 2-dimensional
rotation curves one �nd in galaxies as the result of a projected circular streaming
model. The program rotcurshape is the only program that uses these functions,
the manual page has a lot more details.

20 CHAPTER 3. FILE STRUCTURE

Chapter 4

Graphics and Image Display

NEMO programs also need to display their data of course. We shall make a
distinction between graphics and image data. A simple but �exible graphics
interface has been de�ned in NEMO and is used extensively in programs. To
display image data we rely mostly (but see ccdplot) on external software. Often
images would need to be copied to a FITS �le for this (but see nds9).

4.1 The YAPP graphics interface

The programs in NEMO which use graphics are rather simple and allow no
interactive processing, except perhaps for a simple 'hit-the-return-key' or 'push-
a-mouse-button' between successive plots or actions. A very simple interface
(API) was de�ned (yapp, Yet Another Plotting Package) with basic plot func-
tions. There are currently a few yapp implementations available, such as a
postscript-only device, and pgplot. If your output device is not supported by
the ones available in the current yapp directory ($NEMO/src/kernel/yapp), you
have to write a new one! A reasonably experienced programmer writes a func-
tional yapp-interface in a few hours.

Although this method results in a �exible graphics interface, a program can cur-
rently only be linked with one yapp-interface. This might result in the existence
of more than one version of the same program, each for another graphics out-
put device. We use the convention that the ones for a postscript printer have
a _ps appended to their original name: the program which has the original
name is the one whose display is the current screen, Hence we may see program
names such as snapplot (general Sun screen within suntools), snapplot_ps
(postscript), snapplot_cg (color Sun screen) and snapplot_sv (variable size
sunview pixwindow for storing small images for movies). Again: actual names
may di�er on your system.

21

22 CHAPTER 4. GRAPHICS AND IMAGE DISPLAY

If programs are linked with the multiplexing libraries yapp_mongo or yapp_pgplot
interface, several device drivers are transparently present through mongo, and
the hidden system keyword yapp= is then used to select a device (a default can
be set by using the YAPP environment variable). See also Appendix B.

However, despite these grim sounding words, we currently almost exclusively
use the PGPLOT implementation of yapp.

4.2 General Graphics Display

Another convenient way to present data in graphical form is by using the ta-
ble format. We have already encountered the tables created by many NEMO
programs. These tables can be used by NEMO programs such as tabplot(1), tab-
hist(1), and other packages such as mongo(1L), sm(1L) and gnuplot(1L), but
even by completely foreign packages such as xgobi, grace, and xgraphic. Binary
tables need to be converted to ASCII of course.

4.3 Image Display Interface

Data in image(5NEMO) format can be transferred in �ts(5NEMO) format and
subsequently displayed and analyzed within any astronomical image processing
system. They are generally much better equipped to display and manipulate
data of this kind of format. A number of standalone display programs can also
understand FITS format. An excellent example of this is ds9(1L), although it
understands FITS �les, can be used in a client-server setting and NEMO image
�les can be directly sent to the display server (a temporary �ts �le is created,
which can have drawbacks):

% ds9 &

% nds9 map.ccd

Part II

Cookbook

23

Chapter 5

Examples

Now that we have a reasonable idea how NEMO is structured and used, we
should be ready to go through some real examples Some of the examples below
are short versions of shell scripts1 available online in one of the directories (check
$NEMO/csh and perhaps $NEMOBIN). The manual pages programs(8NEMO) and
intro(1NEMO) are useful to �nd (and cross-reference) programs if you're a bit
lost. Each program manual should also have some references to closely related
programs.

5.1 N-body experiments

In this section we will describe how to set up an N-body experiment, run, display
and analyze it. In the �rst example, we shall set up a head-on collision between
two spherical "galaxies" and do some simple analysis.

5.1.1 Setting it up

In Chapter 3 we already used mkplummer to create a Plummer model; here we
shall use the program mkommod ("MaKe an Osipkov-Merritt MODel") to make
two random N-body realizations of a King model with dimensionless central
potential Wc = 7 and 100 particles each. The small number of particles is
solely for the purpose of getting results within a reasonable time. Adjust it to
whatever you can a�ord on your CPU and test your patience and integrator
(see Appendix E benchmarks).

1% mkommod in=$NEMODAT/k7isot.dat out=tmp1 nbody=100 seed=280158

1where applicable, the examples in this chapter are written in the C-shell language

25

26 CHAPTER 5. EXAMPLES

These models are produced in so-called RMS-units in which the gravitational
constant G=1, the total mass M=1, and binding energy E=�1/2. In case you
would like virial units 2 the models have to be rescaled using snapscale:

2% snapscale in=tmp1 out=tmp1s rscale=2 "vscale=1/sqrt(2.0)"

In the case that your user interface was not compiled with the NEMOINP3 di-
rective, the vscale expression has to be calculated by you, i.e. vscale=0.707107.
Also note the use of the quotes in the expression, to prevent the shell to give
special meaning to the parenthesis, which are shell meta characters.

The second galaxy is made in a similar way, with a di�erent seed of course:

3% mkommod in=$NEMODAT/k7isot.dat out=tmp2 nbody=100 seed=130159

This second galaxy needs to be rescaled too, if you want virial units:

4% snapscale in=tmp2 out=tmp2s rscale=2 "vscale=1/sqrt(2.0)"

We then set up the collision by stacking the two snapshots, albeit with a relative
displacement in phase space. The program snapstack was exactly written for
this purpose:

5% snapstack in1=tmp1s in2=tmp2s out=i001.dat \

deltar=4,0,0 deltav=-1,0,0

The galaxies are initially separated by 4 unit length and approaching each other
with a velocity consistent with infall from in�nity (parabolic encounter). The
particles assembled in the data �le i001.dat are now ready to be integrated.

To look at the initials conditions we could use:

6% snapplot i001.dat xrange=-5:5 yrange=-5:5

which is displayed in Figure 5.1.

2Virial units are the preferred units, see also: Heggie & Mathieu, E=�1/4, in: The use of

supercomputers in stellar dynamics ed. Hut & McMillan, Springer 1987, pp.233
3This can be found out by using the program nemoinp(1NEMO) or help=?.

5.1. N-BODY EXPERIMENTS 27

Figure 5.1: Initial conditions for the encounter as set up in this section

5.1.2 Integration using hackcode1

We then run the collision for 20 time units, with the standard N-body integrator
based on the Barnes & Hut "hierarchical tree" algorithm4:

7% hackcode1 in=i001.dat out=r001.dat tstop=20 freqout=2 \

freq=40 eps=0.05 tol=0.7 options=mass,phase,phi > r001.log

The integration frequency relates to the integration timestep as freq = 1/∆t,
the softening length eps = ε, and opening angle or tolerance tol = θ. A
major output of masses, positions and potentials of all particles is done every
1/freqout = 0.5 time units, which corresponds to about 1/5 of a crossing
time. The standard output of the calculation is diverted to a �le r001.log for
convenience. This is an (ASCII) listing, containing useful statistics of the run,
such as the e�ciency of the force calculation, conserved quantities etc. Some of
this information is also stored in diagnostic sets in the structured binary output
�le r001.dat.

As an exercise, compare the output of the following two commands:

8% more r001.log

9% tsf r001.dat | more

5.1.3 Display and Initial Analysis

As described in the previous subsection, hackcode1 writes various diagnostics
in the output �le. A summary of conservation of energy and center-of-mass
motion can be graphically displayed using snapdiagplot:

10% snapdiagplot in=r001.dat

The program snapplot displays the evolution of the particle distribution, in
projection;

11% snapplot in=r001.dat

4see also their paper in: Nature, Vol. 324, pp 446 (1986).

28 CHAPTER 5. EXAMPLES

Depending on the actual graphics (yapp) interface of snapplot, you may have
to hit the RETURN key, push a MOUSE BUTTON or just WAIT to advance
from one to the next frame.

The snapplot program has a very powerful tool built into it which makes it
possible to display any �projection� the user wants.

As an example consider:

12% snapplot in=r001.dat xvar=r yvar="x*vy-y*vx" xrange=0:10 \

yrange=-2:2 "visib=-0.2<z&&z<0.2&&i%2==0"

plots the angular momentum of the particles along the z axis, Jz = x∗vy−y∗vx,
against their radius, r, but only for the even numbered particles, (i%2==0) within
a distance of 0.2 of the X-Y plane (−0.2 < z&&z < 0.2). Again note that some
of the expressions are within quotes, to prevent the shell of giving them a special
meaning.

The xvar, yvar and visib expressions are fed to the C compiler (during run-
time!) and the resulting object �le is then dynamically loaded into the program
for execution5. The expressions must contain legal C expressions and depend-
ing on their nature must return a value in the context of the program. E.g.
xvar and yvar must return a real value, whereas visib must return a boolean
(false/true or 0/non-0) value. This should be explained in the manual page of
the corresponding programs.

In the context of snapshots, the expression can contain basic body variables
which are understood to the bodytrans(3NEMO) routine. The real variables
x, y, z, vx, vy, vz are the cartesian phase-space coordinates, t the time, m
the mass, phi the potential, ax,ay,az the cartesian acceleration and aux some
auxiliary information. The integer variables are i, the index of the particle in
the snapshot (0 being the �rst one in the usual C tradition) and key, another
spare slot.

For convenience a number of expressions have already been pre-compiled (see

also Table 5.1), e.g. the radius r=
√

x2 + y2 + z2=sqrt(x*x+y*y+z*z), and ve-

locity v=
√

v2
x + v2

y + v2
z=sqrt(vx*vx+vy*vy+vz*vz). Note that r and v them-

selves cannot be used in expressions, only the basic body variables listed above
can be used in an expression.

When you need a complex expression that has be used over and over again, it
is handy to be able to store these expression under an alias for later retrieval.
With the program bodytrans it is possible to save such compiled expressions
object �les under a new name.

As usual an example:

5loadobj, the dynamic object loader, does not works on all UNIX implementations

5.1. N-BODY EXPERIMENTS 29

Table 5.1: Some precompiled bodytrans expressions

name type expression

0 int 0
1 int 1
i int i
key int key (see also real version below)
0 real 0.0
1 real 1.0
ar real (x*ax+y*ay+z*az)/sqrt(x*x+y*y+z*z)

or: (r·	a)/|	r|
aux real aux
ax real ax
ay real ay
az real az
etot real phi+0.5*(vx*vx+vy*vy+vz*vz)

or: φ + 	v2/2
i real i
jtot real sqrt(sqr(x*vy-y*vx)+sqr(y*vz-z*vy)+sqr(z*vx-x*vz))

or: |	r×	v|
key real key (see also int version above)
m real m
phi real phi
r real sqrt(x*x+y*y+z*z)

or: |	r|
t real t
v real sqrt(vx*vx+vy*vy+vz*vz) or: |	v|
vr real (x*vx+y*vy+z*vz)/sqrt(x*x+y*y+z*z)

or: (r·	v)/|	r|
vt real sqrt((vx*vx+vy*vy+vz*vz)-sqr(x*vx+y*vy+z*vz)/(x*x+y*y+z*z))

or:
√
(v2-(r·	v)2/|	r|2)

vx real vx
vy real vy
vz real vz
x real x
y real y
z real z
glon real l, atan2(y,x)*180/PI [-180,180]
glat real b, atan2(z,sqrt(x*x+y*y))*180/PI [-90,90]
mul real (−vx sin l + vx cos l)/r
mub real (−vx cos l sin b − vy sin l sin b + vz cos b)/r
xait real Aito� projection x [-2,2] T.B.A.
yait real Aito� projection y [-1,1] T.B.A.

30 CHAPTER 5. EXAMPLES

13% bodytrans expr="x*vy-y*vz" type=real file=jz

saves the expression for the angular momentum in a real valued bodytrans
expression �le, btr_jz.o which can in future programs be referenced as expr=jz
(whenever a real-valued bodytrans expression is required), e.g.

14% snapplot i001.dat xvar=r yvar=jz xrange=0:5

Alternatively, one can handcode a bodytrans function, compile it, and reference
it locally. This is useful when you have truly complicated expressions that do
not easily write themselves down on the commandline. The (x, y) AITOFF
projection are an example of this. For example, consider the following code in
a (local working directory) �le btr_r2.c:

#include <bodytrans.h>

real btr_r2(b,t,i)

Body *b;

real t;

int i;

{

return sqrt(x*x + y*y);

}

By compiling this:

15% cc -c btr_r2.c

an object �le btr_r2.o is created in the local directory, which could be used in
any real-valued bodytrans expression:

16% snapplot i001.dat xvar=r2 yvar=jz xrange=0:5

For this your environment variable BTRPATH must have been set to include
the local working directory, designated by a dot. Normally your NEMO system
manager will have set the search path such that the local working directory is
searched before the system one (in $NEMOOBJ/bodytrans).

5.1.4 Movies

In the previous subsection we showed that the program snapplot displays snap-
shots of the system at selected times. When displaying such snapshots in rapid

5.1. N-BODY EXPERIMENTS 31

succession, the illusion of a movie can be obtained. Normally however, the time
to search and read the data from disk, calculate the required bodytrans projec-
tion and display it is much too long to give this impression, except possibly for
very small number of particles. Still one lacks basic frame manipulations.

Two solutions are o�ered:

snapplot, movie

First, the snapplot program has a frame= keyword, whose value is the �lename
(more properly the base of the �lename) of the saved bitmap of the current
image on the screen. The format of this bitmap is system and yapp interface
dependent, i.e. it depends on which version of snapplot is used. In other words:
make sure you use the right compiled version of snapplot, and check your local
documentation. It's name may even be as obscure as sp, snapplot_sv or so,
but it may also be hidden under the o�cial snapplot name itself.

There should then exist a program which manipulates and plays the frame

(-raster) �les back at a high enough rate to call it a movie. This is nor-
mally achieved by putting the frames into memory, with preferably a mem-
ory bitmapped display device or a fast screen-loader. On a SUN worksta-
tion the local format used is raster�le(5), and public domain programs such
as movie(1NEMO) and movietool(1NEMO) can be used to re-display and ma-
nipulate frame �les. A disadvantage with movie is that one has to be outside
of suntools, though this may well be worthwile, because of the large number
of options in the menu of movie. With the in-house written clone of movie,
called movie_sv, it is possible to display frame �les from within suntools. The
menu of movie_sv is not as sophisticated, and the number of frames which �t
in memory is not as large, but the advantage of doing it from within suntools is
sometimes more important. By choosing a smaller size of the raster�le this last
disadvantage can even be circumvented. yapp=256 is the default. The normal
procedure6 to create frames and display them within suntools is:

17% sp snap.out frame=movie1

18% movie_sv frame=movie1

Combining the bodytrans(3NEMO) capabilities of snapplot with movie, it is
also possible to look at the 3D structure of an N-body system. The pro-
gram makepath and shell script utility 3dmovie generate various '�yby's or
'�y-around's to get an idea of the 3D structure of a system, though this is
mainly intended for batch use, is cumbersome in interactive mode and better
methods are available though (see below).

6This assumes during installation the snapplot program was compiled with $YAPP_SV
and renamed as sp

32 CHAPTER 5. EXAMPLES

The current movie programs for SUN workstations can only handle black and
white raster�les. check if this is a bug or a feature. ** also some bug when
running within openwindows **

Another making movies: one can also use a fancy snapplot_cg version, and
record image by image on a high quality recording device, or interface with a
genlock7 device, or make slides.

snap3dv, snapxyz, xyzview, xgobi

Another approach is to store the computed 2D or 3D coordinates (that you
would normally view with snapplot in a special format, and use an interactive
3D viewer for this.

The �rst step would be to create that intermediate format. Depending on the
viewer, and di�erent format (or program) needs to be selected to do this. We
have currently two programs available: snap3dv: writes a number of formats,
all intended for exported outside of the NEMO environment (typically they are
all ascii �les), and snapxyz: writes an xyzc �le (a regular NEMO structured
�le which you can view with tsf).

As for the di�erent ascii format, see the comments in the manual page of snap3dv
which programs can be used.

As for the xyzc format: the program xyzview can be used to interactively view
any 3D coordinates of a snapshot at di�erent times. In addition, one can also
store a 3D vector information to the 3D coordinates (could be velocity, or force
�eld or magnetic �eld direction) of a point, and display these. xyzview can keep
a limited number of point data in memory, and display them in rapid succession,
in the view/zoom/velocity mode that can be changed dynamically. The viewing
conditions can be stored in a �le, which could be used to create o�ine movies
in a mode described above.

xgobi is is versatile multi-variate data browsing and analysis tool which suits
itself quite well to some interactive 3D viewing of N-body data.

snapprint in=snap.out times=10 | xgobi

You will need to obtain xgobi via independant means, it does not come with
NEMO. A new version of xgobi is under development, see http://www.ggobi.org/.

7interface device between the video output of a image display device and a VCR recorder
which allows frame-by-frame recording

5.1. N-BODY EXPERIMENTS 33

5.1.5 Advanced Analysis

Determine position of the proper "dynamical center of mass" of a system, e.g.
using the 50% most bound particles. For this, it's best to save the potentials
of the particles during the integration. Most N-body integrators will have an
option to let you save the potentials of the particles. In hackcode1 one has to
use the options=mass,phase,phi keyword to save this relevant information.

Here is an example of analyzing the resulting output dataset of the merger we
ran earlier. Using snapcenter the snapshot is centered weighing each particle by
the third power of the potential, followed by a computation of the lagrangian
radii using snapmradii. The resulting table is piped into tabmath and the
logarithm of all radii is computed (the �rst columns contains the time) after
which the converted table is piped into tabplot.

set rad=0.01,0.05:0.95:0.05,0.99

set nrad=(`nemoinp $rad | wc -w`)

@ nrad++

snapcenter r001.dat - '-phi*phi*phi' report=f |\

snapmradii - $rad |\

tabmath - - %1,`nemoinp 2:$nrad format="log(%%%.f)" separ=,` all |\

tabplot - 1 2:$nrad line=1,1 yapp=2/xs

5.1.6 Generating models

Besides a variety of programs of the kind of mkplummer, mkommod, mkexpdisk
etc., models can also be generated by calculating appropriate tables (containing
a run of density, potential and radius) and feeding them into programs which
translate such tables into a snapshot. An example of a program in the making
is anisot.

An alternative way is to use a package such as Mathematica to integrate the
di�erential equations. With the following example we leave this as an exercise
to the reader:

<< NumericalMath/RungeKutta.m

rpsipsiprime = RungeKutta[{psiprime, -(2/r)psiprime + Exp[-psi]},

{r, psi, psiprime}, {10^-5, 10^-10/6, 10^-5/3}, 50, 10^-8,

MaximumStepSize->0.5];

rpsi = rpsipsiprime[[Table[n,{n,Length[rpsipsiprime]}],{1,2}]];

r = rpsi[[Table[n,{n,Length[rpsi]}],1]];

34 CHAPTER 5. EXAMPLES

psi = rpsi[[Table[n,{n,Length[rpsi]}],2]];

rho = Exp[-psi];

rrhotranspose={r,rho};

rrho = Transpose[rrhotranspose];

logrlogrho = Map[Log, rrho, {2}];

c = Log[10.];

log10rlog10rho = logrlogrho / c;

shortrrho = Take[rrho,30];

PlotODESolution[shortrrho, 1, 2,

AxesLabel-> {"r", "rho"},

PlotLabel -> "Isothermal Sphere"]

PlotODESolution[log10rlog10rho, 1, 2,

AxesLabel-> {"log r", "log rho"}]

5.1.7 Handling large datasets

On of NEMOs weaknesses is also it's strong point: programs must generally be
able to �t all their data in (virtual) memory. Although programs usually free
memory associated with data that is not needed anymore, there is a very clear
maximum to the number of particles it can handle in a snapshot. By default8

a particle takes up about 100 bytes, which limits the size of a snapshots on
workstations somewhat.

It may happen that your data was generated on a machine which had a lot more
memory then the machine you want to analyze your data on. As long as you
have the diskspace, and as long as you don't need programs that cannot operate
on data in serial mode, there is a solution to this problem. Instead of keeping all
particles in one snapshot, they are stored in several snapshots of (equal number
of) bodies, and as long as all snapshots have the same time and are stored back
to back, most programs that can operate serially, will do this properly and know
about it. Of course it's best to split the snapshots on the machine with more
memory:

% snapsplit in=run1.out out=run1s.out nbody=10000

If it is just one particular program (e.g. snapgrid) that needs a lot of extra

8one can recompile NEMO in single precision and de�ne body.h with less wastefull members

5.2. IMAGES 35

memory, the following may work:

% snapsplit in=run1.out out=- nbody=1000 times=3.5 |\

snapgrid in=- out=run1.ccd nx=1000 ny=1000 stack=t

5.2 Images

In this section we will some examples of NEMO's image format. The manual
pages image(5NEMO)) describes the data format, whereas image(3NEMO))
introduces image I/O library routines.

We will give some examples on how to create an image, create a contour diagram,
and export the image as a FITS �le and use it within another package. Speci�c
examples are also given how to read in that FITS �le in AIPS and IRAF.

Images in NEMO are stored (in memory as well as disk) as double precision
�oating point numbers9, which limits programs to how large an image can be
dealt with. There are also the xyio(3NEMO) routines which allow row oriented
access to the image data, but there are not many programs who use these
routines.

5.2.1 Initializing Images

There are a few programs with which images can be initialized:

• ccdmath is the most straightforward program. Here is an example of
creating an image from scratch:

% ccdmath out=ccd1 fie=%x+%y size=2,4

Generating a map from scratch

% tsf ccd1

set Image

set Parameters

int Nx 2

int Ny 4

int Nz 1

double Xmin 0.00000

double Ymin 0.00000

double Zmin 0.00000

double Dx 1.00000

9one can re-install NEMO to work in single precision

36 CHAPTER 5. EXAMPLES

double Dy 1.00000

double Dz 1.00000

double MapMin -4.00000

double MapMax 0.00000

int BeamType 0

double Beamx 0.00000

double Beamy 0.00000

double Beamz 0.00000

double Time 0.00000

char Storage[5] "CDef"

tes

set Map

double MapValues[2][4] -4.00000 -3.00000 -2.00000 -1.00000

-3.00000 -2.00000 -1.00000 0.00000

tes

tes

% ccdprint ccd1 x= y= label=x,y

Y\X 0 1

3 -1 0

2 -2 -1

1 -3 -2

0 -4 -3

• snapgrid converts a snapshot to an image.

• �tsccd converts a FITS �le to an image. The inverse of this, ccd�ts also
exists.

nx,ny -> data[nx][ny]

e.g. ccdmath out=ccd1 nx=10 ny=5

gives double MapValues[10][5]

ccdmath "" - %x 3,2 | tsf - margin=100 | grep MapVal

MapValues[3][2] -2.00000 -2.00000 -1.00000 -1.00000 0.00000 0.00000

ccdmath "" - %y 3,2 | tsf - margin=100 | grep MapVal

MapValues[3][2] -2.00000 -1.00000 -2.00000 -1.00000 -2.00000 -1.00000

5.2. IMAGES 37

5.2.2 Galactic Velocity Fields

As an example, a special section is devoted here to the analysis of galactic
velocity �elds.10

The following programs are available:

ccdvel create a model velocity field, from scratch

rotcur tilted ring model velocity field fitting

rotcurshape annulus rotation curve shape fitting to a velocity field

ccdmath perform math on images, or use math to create images

ccdplot plot (contour/greyscale) an image

ccdprint print out pixel values in an imamge

% nemoinp 0:60 > tmp.r

% tabmath tmp.r - "100*%1/(20+%1)" all > tmp.v

% ccdvel out=map1.vel rad=@tmp.r vrot=@tmp.v pa=30 inc=60

% rotcurshape in=map1.vel radii=0,60 pa=30 inc=60 vsys=0 units=arcsec,1 \

rotcur1=core1,100,20,1,1 tab=-

% ccdmath out=map0.vel fie=0 size=128,128

% rotcurshape map0.vel 0,40 30 45 0 blank=-999 resid=map2.vel \

rotcur1=plummer,200,10,0,0 fixed=all units=arcsec,1

Since rotcurshape computes a residual velocity �eld, one can easily create nice
model velocity �elds from any selected shape by ��tting� a rotation curve shape
to a velocity �eld of all 0s and keeping all parameters �xed to the requested
values:

% ccdmath out=map0.vel fie=0 size=128,128

% rotcurshape map0.vel 0,40 30 45 0 blank=-999 resid=map.vel \

rotcur1=plummer,200,10,0,0 fixed=all units=arcsec,1

% ccdplot map.vel -100:100:10 blankval=0 cmode=1

10In this example shell variables such as set r=`nemoinp 0:60` have been replaced with
the more portable macro �les like @tmp.r. Although the example uses 0:60 and works �ne
in the shell the example was used under, increasing the number to 256 would fail because of
over�owing the maximum characters allowed on the commandline

38 CHAPTER 5. EXAMPLES

5.2.3 Making an image from a snapshot

The simplest way to grid a snapshot into an image is snapccd, but this program
has been superseded by the much more powerful tool snapgrid, which is based
on snapplot. An example:

19% snapgrid snap_in image_out xrange=-10:10 yrange=-10:10 \

nx=128 ny=128 xvar=x yvar=z evar="m*m"

grids the X and Z coordinates of the snapshot snap_in to an 128 ∗ 128 image
image_out. The range in gridded coordinates is from -10 to 10 in both X and
Z, with pixel coordinates de�ned in the center of a cell. Note that the emissivity
(evar=m*m) is given as the square of the mass, which could be applicable for
ionized hydrogen gas when the mass in the snapshot would have been indicative
of the gas density. In the case of stars or neutral hydrogen gas evar=m would
have been more appropriate (which is actually the default).

Often it is then desirable to smooth the image to improve the signal to noise
ratio; although the degree of smoothing depends on the average number of
'objects' per pixel. Example:

20% ccdsmooth image_in image_out gauss=0.3

smoothes the image to a circular beam with FWHM (Full Width Half Maximum)
of 0.3 physical units. In the above gridding example this amounts to about 2
pixels.

5.2.4 Galactic and Extragalactic objects

snapgrid has a speci�c choice of defaults which would make observers of extra-
galactic objects, i.e. external observers from the positive Z axis, happy (i.e.
xvar=x yvar=y zvar=-vz). However with the help of a few other tools in
NEMO one can also make galactic observers happy.

First the extragalactic objects: A total intensity map is generated with the
defaults arguments of snapgrid. Channel maps at speci�c velocities can be gen-
erated using snapgrid zrange=zmin:zmax or zrange=zmean,zsig, depending
on the required velocity beam. A velocity map is also easy to generate: The
raw zeroth and �rst order moment maps are saved (snapgrid moment=0,1)
and smoothed (ccdsmooth) after which they can be divided (ccdmath) result-
ing in a velocity map. Shortcuts are available for mean velocity and dispersion
using moment=-1 and moment=-2 resp., though these modes allocate extra mem-
ory for the additional images needed to perform the operations inside of snap-
grid. Position-velocity diagrams can be directly generated using snapplot/grid

5.2. IMAGES 39

Figure 5.2: Position-Velocity diagram of a galactic disk as seen by an internal
observer

xvar=x yvar=-vz. If position-velocity maps need to be smoothed, remember
that it may have to be done in two steps (independently in 'position' and 've-
locity'), because the current version of ccdsmooth can only do circular gridded
beams if the beam is two dimensional. A more detailed example is given in the
next subsection.

snaprotate, snapshift, snapscale are helpful tools to project a galaxy be-
fore all these operations are performed.

For galactic objects: one must choose an internal viewpoint (x,y,z) and (vx,vy,vz)
somewhere �inside� the object, and make this the new origin using snapspin or
snapshift.

A rotation (snaprotate) may also be necessary. Then use snapplot/grid

xvar=vr yvar='atan2(y,x)' evar='m/(x*x+y*y+z*z)', where the Y axis of
the plot will be a longitude between −π and π, and the X axis the radial
velocity, to create the familiar position-velocity diagram. The evar= keyword
is only needed in gridding the snapshot.

Pretty pictures can be obtained using ccdplot, which can combine a contour
map, overlayed on a greyscale image.

5.2.5 Extragalactic velocity �eld

In this example we shall make a velocity �eld of a a particle representation of
a disk galaxy, with stars on circular orbits in centrifugal balance with a �xed
background potential.

For disk-stars on circular orbits the program mkdisk is useful11:

21% mkdisk out=disk1 potname=expdisk potpars=0,1,0.5 rmax=2 mass=1

In this the mass of the disk was set to non-zero, in order to assign a �nite
emission to each star later on. If you would plot it's con�guration with a program
like snapplot, you would see not only a more-or-less constant surface density but
also that the disk is in�nitely thin (snapplot yvar=z). Also the particles are
indeed on circular orbits (snapplot xvar=r yvar=vt), and there is no velocity
dispersion (snapplot xvar=r yvar=vr).

Viewed from the positive Z axis (the default with snapplot xvar=x yvar=y)
we would see no radial velocities in the disk; in order to get a realistic looking

11Only relevant keywords are shown, remaining take their default value, use help= to see
them

40 CHAPTER 5. EXAMPLES

velocity �eld, we would have to rotate the model around a line of nodes (say
the X axis) using snaprotate:

22% snaprotate in=disk1 out=disk1.r theta=60 order=x

To plot the radial velocity the program snapplot is used by assigning a di�erent
symbol (psize=) to di�erent radial velocities:

23% snapplot in=disk1.r psize=0.1*vz

To simulate a true observation we shall use the program snapgrid to grid the
discrete snapshot data (x,y,z,vx,vy,vz) from the �le disk1.r onto a CCD-
like device: a rectangular pixel array (matrix), with a value (brightness, velocity
etc.) associated with each pixel. Since we are interested in the radial velocity
�eld the zero-th and �rst order moment maps need to be obtained, and divided
to get a radial velocity �eld:

〈v〉 = −
∫

I(z)Vz(z)dz∫
I(z)dz

(1)

Here I(z) and Vz(z) are the intensity and radial velocity along the line of sight.
Note the extra − sign, to conform to the astronomical convention that positive
velocity means negative vz if viewed from the positive Z axis. In NEMO the
denominator and numerator in eq. (1) are evaluated as follows:

24% snapgrid in=disk1.r out=mom0 moment=0 zvar=-vz evar=m

25% snapgrid in=disk1.r out=mom1 moment=1 zvar=-vz evar=m

Since the data will be noisy, it is best to smooth the data a bit. Smoothing must
however be done before the maps are divided (why?). Since the default pixel
size is 4/64=0.0625 a Gaussian beam with a FWHM of 0.15 is used to convolve
the data. We would use the programs ccdsmooth and ccdmath in the following
order:

26% ccdsmooth in=mom0 out=mom0s gauss=0.15

27% ccdsmooth in=mom1 out=mom1s gauss=0.15

28% ccdmath in=mom0s,mom1s out=disk1.vel fie=%2/%1

The �nal output �le, disk1.vel, now contains the radial velocity �eld map at
an inclination of 60o. It can be displayed with programs like ccdplot and ds.
ccdplot is a NEMO program, capable of plotting contours as well as greyscale
(if given the right graphics device driver). ds is general purpose image display
program and displays a map in color on a sun workstation (for this, ds must
have been installed to understand the NEMO �le format).

5.2. IMAGES 41

Figure 5.3: Velocity �eld of a galactic disk

You can also convert the NEMO image �le to a FITS �le. A FITS �le is a
true astronomical standard, which can be read into any other image processing
package (ds can also read FITS �les) (AIPS, IRAF, MIDAS, Miriad). Creating
it can be done as follows:

29% ccdfits in=velfie out=fits1

5.2.6 Integrated Color Maps

A true color map can be created from a snapshot by assigning a color to the
particles in the snapshot. This can be done by gridding the snapshots twice,
each one assigning the particles with a di�erent emissivity. In the example below
a snapshot is assigned an arti�cial radial color gradient. The particles are given
a linearly increasing emissivity, according to their ranking in radius. First, we
must make sure the snapshot is sorted in radius properly:

30% snapsort in=snap.dat out=tmp1 rank=r

and next the snapshot is gridded twice:

31% snapgrid in=tmp1 out=tmp1_1 evar=m

32% snapgrid in=tmp1 out=tmp1_2 evar='m*(i+1)'

This means the color at the center would be −2.5log(I1/I2) = 0, whereas at
the edge the color would be 2.5log(nbody). The images are best viewed when
smoothed, and then divided and taken the log of. The factor 2.5 is left out
here, because the scaling is arbitrary:

33% ccdsmooth in=tmp1_1 out=tmp1_1s gauss=0.3

34% ccdsmooth in=tmp1_2 out=tmp1_2s gauss=0.3

35% ccdmath in=tmp1_1s,tmp1_2s out=color_ccd.dat fie='log(%2/%1)'

........... more to come

5.2.7 Extracting Rotation Curves from Galactic Velocity
Fields

As an example of image analysis we consider the extraction of a rotation curve
from an (axisymmetric) disk galaxy. We shall assume the velocities have been

42 CHAPTER 5. EXAMPLES

extracted already, but not consider the various tricky methods that exist to do
this.

Two programs exist with which most scenarios can be played out to extract
rotation curves: rotcur applies the tilted ring method, where a �xed rotation
speed is assumed in a set of rings, of which all geometric parameters (center,
systemic velocity, position angle and inclincation) can be either �tted or kept
�xed at a given value. For well behaving galaxies better signal to noise in the
�tted parameters can be achieved by the second program, rotcurshape, which
�ts a shape function to a disk. In both cases �tting occurs in a fully non-linear
sense, so initial values for all parameters need to be supplied. The programs
have not been written as to make reasonable estimates.

It is also worth noting that the output units in this program are arcsec for
radii, and km/s for velocities, since we are often using real observations12 For
simulations you will need to use an appropriate mnemonic or actual number
for scaling in both distance and velocity to get the output format with the
appropriate precision. As an example, if you use (Nbody based) virial units,
you will most likely want to use units=arcmin,100 or even units=1000,1000,
depending on your taste.

rotcur

rotcur applies the tilted ring method. This particular version has been derived
from the original sheltran version within GIPSY, although many things still
work the same compared to the current GIPSY version.

1% rotcur help=h

in : Input image velocity field [???]

radii : Radii of rings (arcsec) []

vrot : Rotation velocity []

pa : Position angle (degrees) []

inc : Inclination (degrees) []

vsys : Systemic velocity []

center : Rotation center (grids w.r.t. 0,0) [center of map] []

frang : Free angle around minor axis (degrees) [20]

side : Side to fit: receding, approaching or [both] []

weight : Weighting function: {uniform,[cosine],cos-squared} []

fixed : Parameters to be kept fixed {vsys,vrot,pa,inc,xpos,ypos} []

ellips : Parameters for which to plot error ellips []

beam : Beam (arcsec) for beam correction [no correction] []

dens : Image containing containing density map []

tab : If specified, this output table is used in append mode []

resid : Output of residuals in a complicated plot []

tol : Tolerance for convergence of nllsqfit [0.001]

12note FITS �les use degrees and m/s for distances and velocities

5.2. IMAGES 43

lab : Mixing parameter for nllsqfit [0.001]

itmax : Maximum number of allowed nllsqfit iterations [50]

units : Units of input {deg, arcmin, arcsec, rad, #},{#} for length and velocity [deg,1]

blank : Value of the blank pixel to be ignored [0.0]

inherit : Inherit initial conditions from previous ring [t]

reuse : Reuse points from previous rings if used before? [t]

fitmode : Basic Fitmode: cos(n*theta) or sin(n*theta) [cos,1]

nsigma : Iterate once by rejecting points more than nsigma resid [-1]

imagemode : Input image mode? (false means ascii table) [t]

wwb73 : Use simpler WWB73 linear method of fitting [f]

VERSION : 2-jun-04 PJT [2.12]

As an example we shall consider the galaxy NGC 6503, for which VLA data are
publicly available on ADIL13.

1% fits in=NGC6503.MOM1 - | ccdmath - vel1.ccd %1/1000

notice we're already converting the m/s in FITS to km/s in the ccd �le. The
angular distances are in degrees. In the printout below the output of tsf and
relevant sections of fitshead have been merged to show their correspondence:

set Parameters

int Nx 512

int Ny 512

int Nz 1

double Xmin 267.533 // CRVAL1 = 2.67250000000E+02 /

double Ymin 69.8322 // CRVAL2 = 7.01166666667E+01 /

double Zmin 1.00000

double Dx -0.00111111 // CDELT1 = -1.111111138E-03

double Dy 0.00111111 // CDELT2 = 1.111111138E-03

double Dz 1.00000

double Xrefpix 0.00000 // CRPIX1 = 2.560000000E+02

double Yrefpix 0.00000 // CRPIX2 = 2.570000000E+02

double Zrefpix 0.00000

double MapMin -102.844 // DATAMIN = -1.028444453E+05

double MapMax 144.537 // DATAMAX = 1.445368906E+05

int BeamType 0

double Beamx 0.00000

double Beamy 0.00000

double Beamz 0.00000

char Namex[9] "RA---SIN"

char Namey[9] "DEC--SIN"

double Time 0.00000

char Storage[5] "CDef"

int Axis 0

tes

13NCSA :: ADIL code number 95.DW.01.01

44 CHAPTER 5. EXAMPLES

rotcurshape

1% rotcurshape help=h

in : Input image velocity field [???]

radii : Radii of rings (arcsec) []

pa : Position angle (degrees) []

inc : Inclination (degrees) []

vsys : Systemic velocity []

center : Rotation center (grids w.r.t. 0,0) [center of map] []

frang : Free angle around minor axis (degrees) [0]

side : Side to fit: receding, approaching or [both] []

weight : Weighting function: {[uniform],cosine,cos-squared} [u]

fixed : Geometric parameters to be kept fixed {vsys,xpos,ypos,pa,inc} []

ellips : ** Parameters for which to plot error ellips []

beam : ** Beam (arcsec) for beam correction [no correction] []

dens : Image containing containing density map to be used as weight []

tab : If specified, this output table is used in append mode []

resid : Output of residual field []

fit : Output the fit? or the residuals [f]

tol : Tolerance for convergence of nllsqfit [0.001]

lab : Mixing parameter for nllsqfit [0.001]

itmax : Maximum number of allowed nllsqfit iterations [50]

units : Units of input {deg, arcmin, arcsec, rad, #},{#} for length and velocity [deg,1]

blank : Value of the blank (pixel) value to be ignored [0.0]

nsigma : Iterate once by rejecting points more than nsigma resid [-1]

imagemode : Input image mode? (false means ascii table) [t]

rotcurmode : Full velocity field, or rotcur (r,v) fit only [f]

load : dynamically loadobject file with rotcur_<NAME> []

rotcur1 : Rotation curve <NAME>, parameters and set of free(1)/fixed(0) values []

rotcur2 : Rotation curve <NAME>, parameters and set of free(1)/fixed(0) values []

rotcur3 : Rotation curve <NAME>, parameters and set of free(1)/fixed(0) values []

rotcur4 : Rotation curve <NAME>, parameters and set of free(1)/fixed(0) values []

rotcur5 : Rotation curve <NAME>, parameters and set of free(1)/fixed(0) values []

VERSION : 13-jan-05 PJT [1.3b]

5.3 Tables

NEMO has a few programs that manipulate table �les, although much more
can be done with standard UNIX programs such as awk(1). A few examples are
given how they can be used together. Programs such as mongo(1L) can be used
to display results. If you're in the possession of sm, most of the functionality of
the table programs can be reproduced with sm. A quick and dirty plot can also
be made with tabplot(1NEMO).

5.3. TABLES 45

The following example shows how tabmath(1NEMO) and awk(1) can do the
same thing:

1% tabmath tab_in tab_out %1+%2

2% awk '{ print $0,$1+$2 }' tab_in > tab_out

One can also use the table programs in UNIX pipes, and use NEMO's feature
of denoting a '-' (dash) as �lename for standard input/output �les:

3% awk '{print $1,$3,$5}' tab_in | tabmath - tab_out \

"ifgt(%1,%2,sin(%3),cos(%3))"

Don't ask why such a complicated ifgt construct, it's just an example. See
nemo�e(3NEMO) for the syntax options of the third (newcol=) keyword of
tabmath.

5.3.1 Making an image from a table

Any scatterdiagram can now easily be turned into an image by using the snap-
shot interface! This would be temporary solution until the need for this would
turn into a program tabccd(1NEMO). The example below also demonstrates how
existing tools can be e�ectively combined to create a new tool!

#! /bin/csh -f

- transform table into image -

DEMO version: no bells and whistles

set in=$1 # infile (table)

set out=$2 # outfile (image)

set xcol=$3 # columns from table to use

set ycol=$4

set xrange=$5 # gridding area

set yrange=$6

set nx=$7 # number of pixels to use

set ny=$8

set sx=$9 # some smoothing

set sy=$10

set tmp=tmp$$ # temp name for intermediate results

convert table to ASCII "205" snapshot (see atos(1NEMO))

awk "END {print NR}" $in > $tmp.1

echo "3" >> $tmp.1

echo "0.0" >> $tmp.1

awk '{print 1.0}' $in >> $tmp.1

awk '{print $'$xcol',$'$ycol',0.0}' $in >> $tmp.1

46 CHAPTER 5. EXAMPLES

awk '{print 0.0,0.0,0.0}' $in >> $tmp.1

convert to snapshot

atos $tmp.1 $tmp.2

convert to image

snapgrid $tmp.2 $tmp.3 xrange=$xrange yrange=$yrange nx=$nx ny=$ny zvar=vz

smooth image a bit

ccdsmooth $tmp.3 $tmp.4 gauss=$sx dir=x

ccdsmooth $tmp.4 $out gauss=$sy dir=y

write a FITS file

ccdfits $out $out.fits

clean up mess

rm -f $tmp.*

5.4 Potential

Programs which need an external potential (e.g. orbit integrators) can obtain
these via the so-called potential descriptors. They are implemented in NEMO
as loadable object �les14. To the user interface this commonly appears as a set
of three program keywords potname=, potpars= and potfile=; they signify the
identifying name of the potential, its parameters and an associated �lename.
The last two are optional, since the potential may not need parameters or an
associated �le(s).

For example, the program potlist lists the value of the potential and forces at
selected gridpoints:

% potlist potname=harmonic potpars=0,3,2 x=0:3:1 y=0:3:1 z=0:6:2 dr=0.001

x y z ax ay az phi phixx phiyy phizz rho dr time

0 0 0 -0 -0 -0 0 9 4 1 1.11408 0.001 0

1 1 2 -9 -4 -2 8.5 9 4 1 1.11408 0.001 0

2 2 4 -18 -8 -4 34 9 4 1 1.11408 0.001 0

3 3 6 -27 -12 -6 76.5 9 4 1 1.11408 0.001 0

The usage of the colon separated implied do-loop in the x=, y= and z= keywords
assumes that herinp(3NEMO) has been implemented. potlist will also take
�rst order derivatives of the force, to test Poissons equation. This speci�c
potential, harmonic, happens to have 4 parameters, although only 3 were given
in the example. The fourth one will take some default present in the descriptor.
The �rst parameter of all potentials should be the pattern speed15. The second
through fourth parameters are the ωX , ωY and ωZ harmonic coe�cients resp.,
where the potential is given as:

14Not all operating systems allow the programmer to use this feature - see your local loadobj
implementation

15Although if you supply your own potential you could cheat and bypass this

5.4. POTENTIAL 47

Φ(x, y, z) =
1
2
ω2

Xx2 +
1
2
ω2

Y y2 +
1
2
ω2

Zz2

Although NEMO comes supplied with a small number of standard potential
descriptors, it is relatively easy to make your own ones. In Section ?? we will
describe how to add your own potential descriptors. Next we shall present a
few examples from the standard list of available potentials, the full listing can
be found in Appendix F.

5.4.1 A few potentials

Here we list some of the standard potentials available in NEMO, in a variety of
units, so not always G = 1!

Recall that most NEMO program use the keywords potname= for the identifying
name, potpars= for an optional list of parameters and potfile= for an optional
text string,for example for potentials that need some kind of text �le. The
parameters listed in potpars= will always have as �rst parameter the pattern
speed in cases where rotating potentials are used. A Plummer potential with
mass 10 and core radius 5 would be hence be supplied as: potname=plummer

potpars=0,10,5. The plummer potential ignored the potfile keyword.

plummer: Plummer potential (BT, pp.42, eq. 2.47)

Φ = − M

(r2
c + r2)1/2

Ωp Pattern Speed

M Total mass

rc Core radius

5.4.2 How to build your own potential descriptors

Although this subject really is one that should be deferred to Chapter 6, we will
now present a simple prototype �de�nition� for a potential descriptor in C and
Fortran16

void inipotential (int *npar, double *par, char *name);

void potential (int *ndim, double *pos, double *acc, double *pot, double *time);

SUBROUTINE INIPOTENTIAL(NPAR, PAR, NAME)

SUBROUTINE POTENTIAL(NDIM, POS, ACC, POT, TIME)

16FORTRAN is not supported on all architectures

48 CHAPTER 5. EXAMPLES

As you can and will see more of, a potential descriptor is in origin really a
C or FORTRAN source code �le, that needs two (FORTRAN) subroutines or
(C) functions with the callable names inipotential and potential. Their
arguments must conform to the speci�cation given above. Because we do want
to allow Fortran source code as well, all arguments are called by reference in C.

Programs which need a potential descriptor will automatically compile your
source code (if needed) and load the object code into the program for usage.
The repository of standard NEMO potential descriptors (as object �les) lives
in $NEMOOBJ/potential, and is automatically searched when the environment
variable POTPATH is appropriately set. Note that the two subroutines them-
selves are not called directly by the user, but by a workhorse routine from the
standard NEMO library. This hides much of the interface for the programmer.
More details on this technique can be found in Chapter 6 (still to come).

Below is a fully commented listing of the harmonic potential, as an example of
such a potential descriptor given in the C language. It, and other potentials, can
be found in source code form in the directory $NEMO/src/orbit/potential/data

/*

* harmonic.c: procedures for initializing and calculating

* the forces and potential of a harmonic potential

*/

#include <stdinc.h> /* formal NEMO include file */

local double omega = 0.0; /* defined but not used in here */

local double h[3] = {1.0,1.0,1.0}; /* default parameters */

/*--

* INIPOTENTIAL: initializes the potential.

* input: npar, the number of parameters

* par[] an array of npar parameters

* If npar=0 defaults are taken (remember to initialize them

* as static (local) variables in this file)

*--

*/

void inipotential (int *npar, double *par, string name)

{

int i;

if (*npar>0)

omega = par[0];

for (i=1; i<(*npar); i++)

h[i-1] = sqr(par[i]);

if (*npar > 4)

warning("Only 4 parameters used in Harmonic Potential");

dprintf (1,"INI_POTENTIAL Harmonic Potential\n");

dprintf (1," Parameters : Pattern Speed = %f\n",omega);

dprintf (1," wx^2,wy^2,wz^2= %f %f %f\n",h[0],h[1],h[2]);

}

/*--

* POTENTIAL: the worker routine. Determines at any given point

* (x,y,z) the forces and potential.

* Note that this routine is good for 1, 2 as well as 3D

*--

5.5. ORBITS 49

*/

void potential (int ndim,double *pos,double *acc,double *pot,double *time)

{

int i;

*pot = 0.0;

for (i=0; i<*ndim; i++) {

(*pot) += h[i]*sqr(pos[i]);

acc[i] = -h[i]*pos[i];

}

*pot *= 0.5;

}

5.5 Orbits

In this section we will describe how to integrate individual stellar orbits, display
and analyze them. Be aware that although 3D orbits can be computed the
number of utilities to analyze them is rather limited.

Orbits are normally stored in data�le (see also orbit(5NEMO)), and a close
conceptual relationship exists between a (single-particle type) snapshot and
an orbit: an orbit is an ordered series of phase-space coordinates whereas a
snapshot is a series of particles with no particular order, but all at the same
time.

Since orbits will be computed in an analytical potential, we assume for the
remainder of this section that you have familiarized yourself with how to sup-
ply potentials to orbit integrator programs. They all share the same triple
�potname=, potpars=, potfile=� keyword interface, as described in Section
5.4. Many examples of the tricky potpars= keyword are given in Appendix F.

5.5.1 Initializing

There are a few programs with which orbits can be initialized:

• mkorbit is the most straightforward program. You can give simply give it
all 6 phase space coordinates, and an orbit �le consisting of this one point
is generated. It is also possible to give the potential in which the particle
is to move, and 5 phase space coordinates plus the energy, or even 4 phase
space coordinates and the energy plus the total angular momentum or
angular momentum along the Z axis (for axisymmetric systems).

Let's start with an example of creating a simple orbit by itself with no
associated potential.

% mkorbit out=orb1 x=1 y=0 z=0 vx=0 vy=0.2 vz=0

50 CHAPTER 5. EXAMPLES

Warning [mkorbit]: Potential potname= not used; set etot=0.0

pos: 1.000000 0.000000 0.000000

vel: 0.000000 0.200000 0.000000

etot: 0.000000

lz=0.200000

% tsf orb1

char History[59] "mkorbit out=orb1 x=1 y=0 z=0 vx=0 vy=0.2 vz=0 VERSION

=3.2b"

set Orbit

set Parameters

int Ndim 03

double Mass 1.00000

double IOM[3] 0.00000 0.200000 0.00000

int Nsteps 01

tes

set Potential

tes

set Path

double TimePath[1] 0.00000

double PhasePath[1][2][3] 1.00000 0.00000 0.00000 0.00000 0.200000

0.00000

tes

tes

• perorb is a program that for given initial conditions (similar to the ones
described in mkorbit above) attempts to calculate periodic orbits in that
potential. The output �le will be a �le with one (or more) orbits. This is
a bit of an advanced program, and will not be covered here.

• stoo is a program that can take a particle position from a snapshot, and
turn it into an orbit. For example, sampling some initial conditions from
the positions of stars in a Plummer sphere, we could use the following
small C-shell code to �nd some statistical properties of this selected set of
orbits17

mkplummer out=p100 nbody=p100

foreach i (`nemoinp 0:100:10`)

stoo in=p100 out=orb$i ibody=$i

orbint orb$i orb$i.out 10000 0.01 10000 potname=plummer

orbstat orb$i.out

end

17For the careful reader: mkplummer and potname=plummer actually have di�erent units, and
as such this experiment is not properly set up.

5.5. ORBITS 51

The reverse program, otos turns an orbit into a snapshot, and may come
in handy since the snapshot package has far more advanced analysis pro-
grams.

5.5.2 Integration

• orbint integrates orbits from given initial conditions. If the input orbit
has more than 1 step, the last step is taken as the initial conditions.
Although the potname=, potpars=, potfile= keywords can be given, if
the input orbit contains...

Figure 5.4: Sample orbit 1 (orb1.out)

• perorb �nds periodic orbits, and stores a full period which should close
the orbit. This program �nds periodic orbits in the XY plane (i.e. cur-
rently it will only �nd 2D orbits) by searching for the centers of invariant
curves in the surface of section.

• henyey also �nds periodic orbits, but uses Henyey's method18. This
program has however not been released to the public version of NEMO.

5.5.3 Display

• orbplot is the only orbit plotting program we currently have. For more so-
phisticated display tabplot and/or snapplot would have to be used after
transforming the data. Also snapplot uses the powerful bodytrans expres-
sion parser to plot arbitrary body related expressions, although orbplot

can handle both x, y, z and vx, vy, vz for the xvar= and yvar= key-
words. An example of the output of orbplot is given in Figure 5.4.

5.5.4 Analysis

• orbstat is an example of a simple program that reads orbits, and displays
statistics of it's 2D (x-y-) coordinates: maximum extent, as well as statis-
tics of the angylar momentum. This program is not suited for 3D orbits
yet.

% orbint orb1 orb1.long

% orbstat orb1.out

T E x_max y_max u_max v_max j_mean j_sigma

1000 -0.687107 1 0.999958 0.746764 0.746611 0.2 3.83111e-09

18see also van Albada & Sanders, (1982, MNRAS, 201, 303)

52 CHAPTER 5. EXAMPLES

• orbfour performs a variety of fourier analysis on the

% orbint orb1 orb1.long 100000 0.01 10000 10 plummer

INIPOTENTIAL Plummer: [3d version]

Pattern speed=0

0.000000 0.020000 -0.707107 -0.6871067811865

100.000000 0.277794 -0.964901 -0.6871067811856

200.010000 0.020912 -0.708019 -0.6871067812165

300.020000 0.271222 -0.958329 -0.6871067812194

400.030000 0.023376 -0.710483 -0.6871067812465

500.040000 0.259253 -0.946360 -0.6871067812551

600.050000 0.027415 -0.714522 -0.6871067812765

700.060000 0.242979 -0.930086 -0.6871067812904

800.070000 0.033056 -0.720163 -0.6871067813065

900.080000 0.223694 -0.910801 -0.6871067813241

Energy conservation: 2.00138e-10

% orbfour orb1.long amode=t

<R> N A0 A1 A2 A3 A4 B1 B2 B3 B4

1 10001 0.000360461 0.334714 0.000150399 -0.000472581 -0.000158864

-0.000667155 0.000228086 -0.000725406 0.000103029

% orbfour orb1.long amode=f

<R> N C0 C1 P1 C2 P2 C3 P3 C4 P4

1 10001 0.000360461

0.334715 -0.114202

0.000273209 56.5992

0.000865763 -123.083

0.000189349 147.035

• orbsos computes surface of section coordinates. Since this program does
not plot, but produces a simple ascii table, you can pipe the output into
tabplot:

% orbsos orb1.long y | tabplot - 3 4 xlab=Y ylab=VY

% orbsos orb1.long x | tabplot - 3 4 xlab=X ylab=VX

will plot either a Y-VY or X-VX surface of section.

Figure 5.5: Surface of Section for sample orbit 1 (orb1.long)

• orbdim computes the dimensionality of an orbit, i.e. how many integrals
of motions it has. Although it requires very long integration times to
accurately compute this, it is completely automatic, and does not require

5.6. EXCHANGING DATA 53

an analysis like that for a surface of section (which is also graphic). It is
based on an interesting paper by Carnevali & Santangelo19.

• otos transforms an orbit back into a snapshot, thereby giving you the
much richer set of analysis tools that are available for snapshot's.

5.6 Exchanging data

The exchange of (binary) data between machines of di�erent architecture is often
a painful process. For NEMO binary structured �les, we have devised a general
portable way to port �les between machines, even if both have di�erent low level
�le formats (e.g. SUN OS and the Cray UNICOS OS). A di�erent solution has
been used by the MIRIAD package, which writes it's data always in the same
(IEEE) format. This means a di�erent layer of translation routines is needed
for certain architectures, notably VMS and Unicos. A similar mechanism is
expected to be used in NEMO in some future release.

In case the other machine has a totally di�erent �le format, it's handy to have
the data in simple ASCII table format. NEMO also allows import and export of
N-body data through an ASCII format described in atos It can be used directly
for multiple-snapshot data, but example shell script are available to transport
data.

In the case of N-body data there is no standard format to store the particle
information, and we are subject to someone's favorite format. We will encounter
a few, and show examples how to convert them under NEMO. In the case of
images, there happens to be an astronomical standard: FITS20, we will discuss
a few applications here too. Tables can also be transferred in an extended form
of the FITS format21, although here the ASCII format may do equally well.
Even N-body snapshots can be written in FITS format, for an example see the
toy program snapfits which uses the now deprecated FITS Random Group
Format.

5.6.1 NEMO data �les in general

Here is a neat trick to exchange NEMO data �les between systems of di�erent
binary �le format. On machine 1 the data is saved in (UNIX) compressed ASCII
format:

m1% tsf r.dat maxprec=t allline=t | compress > r.data.Z

19Carnevali, P. & Santangelo, P., 1984. ApJ 281 473-476
20See: Wells et al. (1981), A&A Suppl. 44, 363.
21See: Harten et al. (1988), A&A Suppl. 73, 365.

54 CHAPTER 5. EXAMPLES

The data can then be transported to machine 2 (in binary mode of course if
data was compressed), and saved in the local binary structured �le format:

m2% zcat r.data.Z | rsf in=- out=r.dat

It turns out that for most data �les the compressed ASCII �le in full precision
is about as large as the original binary �le. The example above also shows that,
by using pipes, machine 1 and 2 never need to store the full ASCII version of
the �le, which will in general be about 4 times as large as the binary �le(s).
Note again that a dash �lename is interpreted as standard input/output in the
NEMO environment (see also stropen(3NEMO)), but one should be warned here
that some older versions of structured �les could not be used in pipes.

For machines which support I/O redirection in the ftp program, an even more
e�cient solution is possible by redirecting the (compressed) data from the other
machine into local binary structured format:

m2% ftp m1

ftp> binary

ftp> get r.data.Z "| zcat | rsf - r.dat"

The compressed ASCII data never needs to be stored on the local disk directly.
The data is uncompressed and passed to rsf through a pipe.

5.6.2 Snapshot Data

To import a snapshot into NEMO format one can use atos or write the data in
this ASCII (also referred to as the "205") format. In particular a snapshot which
is already in table format with masses, positions and velocities in columns 1,2-
4,5-7, can be converted to snapshot format using a simple C-shell. For example,

% table_to_snapshot tab_file snap_file

with the following simpli�ed version of the table_to_snapshot C-shell script
(without any bells and whistles) using awk (tabmath could have been used sim-
ilarly):

#! /bin/csh -f

table_to_snapshot: demo version

set infile=$1 # input table (m,x,y,z,vx,vy,vz)

set outfile=$2 # output snapshot

set tmpfile=tmp$$ # a temporary scratch name

5.6. EXCHANGING DATA 55

awk "END {print NR}" $infile > $tmpfile

echo "3" >> $tmpfile

echo "0.0" >> $tmpfile

awk '{print $1}' $infile >> $tmpfile

awk '{print $2,$3,$4}' $infile >> $tmpfile

awk '{print $5,$6,$7}' $infile >> $tmpfile

atos $tmpfile $outfile

rm $tmpfile

The full version of this script can be found in in $NEMO/csh.

5.6.3 Image Data

For images the situation is a little better because there exists a standard in the
astronomical community: the FITS format (see also �ts(5NEMO)). ccdfits
convert a NEMO image to standard FITS disk�le, which can be read and manip-
ulated by various image processing packages. The reverse program, fitsccd, is
also available, and can convert most FITS images into NEMO's image(5NEMO)
format. When importing FITS images into NEMO, always be concerned with
the units, since NEMO insists that the origin be at (0,0,0).

AIPS

In AIPS the following can be done:

Suppose your �ts �le is stored in a directory, which we will call $dir (e.g. set
dir=/usr/nemo/fits) and the �lename is FITS.DAT (most �lenames MUST
be in upper case in AIPS), then the AIPS task IMLOD can be used to read the
�ts �le (or from tape, see below):

% setenv XX $dir # make sure this is set for AIPS

% aips # login/start up AIPS

... # (some more login stuff here)

> TASK 'IMLOD' # set task name

> INFILE 'XX:FITS.DAT' # set up input FITS filename

> INNAME 'TEST' # set some name for output AIPS file

> GO # run the task

> MCAT # check if file TEST there

> GETN ... # get map number for file TEST

> TVLOD # load it on tv

> TVFIDDLE # change contrast

> EXIT # quit AIPS

%

56 CHAPTER 5. EXAMPLES

Using the tape-interface is a bit more cumbersome: dump the FITS.DAT �le
to a tape, using dd(1) with a block size of 2880 bytes22, and have IMLOD read
the data from tape. This in case the disk interface will not work. Even on
DEC-VMS machines the direct disk �ts �le may be used (this has done been
successfully in the GIPSY package - see ccd�ts(1NEMO)).

The reverse process can also be used to write AIPS �les to disk in FITS format
using the task FITTP, as show in the following example:

% setenv XX $dir # make sure this is set for AIPS

% aips # login/start up AIPS

... # (some more stuff here)

> MCAT # check directory

> TASK 'FITTP' # set task name

> INNAME 'TEST' # set name of input AIPS file

> OUTFILE 'XX:FITS.DAT' # filename for output FITS file

> GO # run the task

> EXIT # quit AIPS

%

The �le will then be in $dir/FITS.DAT, make sure that the program aips has
write permission in that directory. Again, if the disk interface does not work,
the �le has to be dumped to tape, and read to disk using dd(1). For an example
see ccd�ts(1NEMO).

IRAF

IRAF is normally started up by issuing the cl command (you may need a
login.cl startup �le in your current or home directory). Converting an existing
�le in IRAF format into a FITS is very simple, as is illustrated in the following
example:

% cl # startup IRAF

cl> dataio # go into the dataio area

da> wfits iraf_file fits_file # and convert it

da> logout # quit IRAF

%

The parameter bitpix may have to be set to 16 or 32, if you don't like it's
default. The complementary IRAF program rfits converts a FITS �le into
IRAF format.

22Newer versions of AIPS now allow you to use a blocking factor which writes blocks in
multiples of 2880 bytes; e.g. a blocking factor of 10 needs block size 28800 bytes.

5.6. EXCHANGING DATA 57

MIRIAD

MIRIAD can currently not read or write FITS images with BITPIX=8.

IDL

MIDAS

58 CHAPTER 5. EXAMPLES

Part III

Programmers Guide

59

Chapter 6

Introduction

In this chapter an introduction1 is given how to write programs within the
NEMO environment.

To the application programmer NEMO consists of a set of macro de�nitions and
object libraries, designed for numerical work in general and stellar dynamics in
particular. A basic knowledge how to program in C, and use the local oper-
ating system to get the job done, is assumed. If you know how to work with
Makefile's, even the better.

After reviewing how the NEMO environment should be present, Section 6.2
describes some of the available macro packages. How an example program is
written, compiled and used in NEMO is shown in Section 6.3. In Section 6.5 we
will show how you can write programs in C++, and still use the NEMO libraries.
Finally, Section 6.6 deals with those people who insist on using FORTRAN,

6.1 The NEMO Programming Environment

The modi�cations necessary to your UNIX environment in order to access
NEMO are extensively described in Appendix A. This not only applies to a
user, but also to the application programmer, although for the latter the static
environment is to be preferred here. Relevant environment variables are de-
scribed in Appendix J.2

In summary, the essential changes to your environment consist of three additions
to your local .cshrc startup �le (or its equivalent if you don't use the csh-shell):

1Based on an original report �NEMO: Elementary Mechanics Observatory� by Joshua
Barnes

61

62 CHAPTER 6. INTRODUCTION

1. set the environment variable NEMO to the location of the root directory
of NEMO, and the NEMOHOST environment variable.

2. source the startup �le $NEMO/NEMORC.

3. add $NEMOBIN to your search path in a convenient location (but before the
system directories where the C compiler is located).

Although the environment variable NEMOHOST is used to allow the package
to be shared across a number of di�erent architectures (e.g. Sun3's and Sun4's),
it is recommended to use this environment variable in a single-architecture en-
vironment

Once the NEMO environment is merged into your UNIX environment, most
programs can be compiled as follows:

cc -o try try.c -lnemo -lm

6.2 The NEMO Macro Packages

We will describe a few of the most frequently used macro packages available to
the programmer. They reside in the form of header include �les in a directory
tree starting at $NEMOINC. Your application code would need references like:

#include <stdinc.h>

#include <snapshot/body.h>

#include <snapshot/get_snap.c>

Some of the macro packages are merely function prototypes, to facilitate mod-
ern C compilers, and have associated object code in libraries in $NEMOLIB and
programs need to be linked with the appropriate ones.

6.2.1 stdinc.h

The macro package stdinc.h provides all basic de�nitions that ALL of NEMO's
code must include as the �rst include �le. It also replaces the often used
stdio.h include �le in C programs. The stdinc.h include �le will provide
us with a way to standardize on future expansions, and make code more ma-
chine/implementation independent (e.g. POSIX.1). In addition, it de�nes a
more logical standard for C notation. For example, the normal C practice of
using pointers to character for pointer to byte, or integer for bool, tends to
encourage a degree of sloppy programming, which can be hard to understand
at a later date.

6.2. THE NEMO MACRO PACKAGES 63

A few of the basic de�nitions in this package:

• NULL: macro for 0, used to distinguish null characters and null pointers. This
is often already de�ned by stdio.h. There is potential trouble when
NULL has been set to (void *)0, '\0' is OK though. Example on IBM's
AIX operating system.

• bool: typedef for short int or char, used to specify boolean data. See also
next item. 2.

• TRUE, FALSE: macros for 1 and 0, respectively, following normal C conven-
tions.

• byte: typedef for unsigned char, used to specify byte-sized data.

• string: typedef for char *, used to point to strings. Don't use string for
pointers you increment, decrement or explicitly follow (using *); such
pointers are really char *.

• real, realptr: typedef for float or double (float * or double *, respec-
tively), depending on the use of the SINGLEPREC �ag. The default is
double.

• proc, iproc, rproc: typedefs for pointers to procedures (void functions),
integer-valued functions and real-valued functions respectively.

• local, permanent: macros for static. Use local when declaring variables
or functions within a �le to be local to that �le. They will not appear in
the symbol table be usable as external symbols. Use permanent within a
function, to retain their value upon subsequent re-entries in that function.

• PI, TWO_PI, FOUR_PI, HALF_PI, FRTHRD_PI: macros for π, 2π, 4π, π/2
and 4π/3, respectively.

• ABS(x), SGN(x): macros for absolute value and sign of x, irrespective of the
type of x.. Beware of side e�ects.

• MAX(x,y), MIN(x,y): macros for the maximum and minimum of x,y, irre-
spective of the type of x,y. Beware of side e�ects.

• stream: typedef for FILE *. They are mostly used with the NEMO functions
stropen and strclose, which are functionally similar to fopen(3) and
fclose(3), plus some added NEMO quirks. (see section 6.2.5 below)

2The curses library also de�nes bool, and this made us change from short int to char

64 CHAPTER 6. INTRODUCTION

6.2.2 getparam.h

The command line syntax described earlier in Chapter 2 is implemented by a
small set of functions used by all conforming NEMO programs. A few function
calls generally su�ce to get the values of the input parameters. A number of
more complex parsing routines are also available, to be discussed in the next
subsection.

First of all, a NEMO program must de�ne which program keywords it will
recognize. For this purpose it must de�ne an array of strings with the names
and the default values for the keywords, and optionally, but STRONGLY rec-
ommended, a one line help string for that keyword:

#include <stdinc.h> /* every NEMO module needs this */

#include <getparam.h> /* needed when user interface used */

string defv[] = { /* definitions of the keywords */

"in=???\n Input file (a snapshot)",

"n=10\n Number of particles to view",

"VERSION=1.1\n 14-jul-89 - 200th Bastille Day - PJT",

NULL,

};

string usage = "example program"; /* def. of the usage line */

The �keyword=value� and �help� part of the string must be separated by a
newline symbol (\n). If no newline is present, as was the case in earlier releases,
no help string is available.3 The 'help=h' command line option displays the
�help� part of string during execution of the program for quick inline reference.
The �usage� part de�nes a string that is used as a one line reminder what the
program does. It's used by the various invocations of the user interface.

The �rst thing a NEMO program does, is comparing the command line argu-
ments of the program (commonly called string argv[] in a C program) with
this default vector of �keyword=value� strings (string defv[]), and replace
appropriate reset values for later retrieval. This is done by calling initparam4

as the �rst step in your MAIN program:

main (argc, argv)

int argc;

string argv[];

3ZENO uses a di�erent technique: ...
4It secretly assumes that argv[] is NULL terminated, which is not guaranteed on all UNIX

implementations

6.2. THE NEMO MACRO PACKAGES 65

{

initparam(argv,defv);

. . .

It also checks if keywords which do not have a default value (i.e. were given
�???�) have really been given a proper value on the command line, if keywords
are not speci�ed twice, enters values of the system keywords etc.

There is a better alternative to de�ne the main part of a NEMO program: by re-
naming the main entry point main() to nemo_main() , without any arguments,
and calling the array of strings with default 'key=val's string defv[], the
linker will automatically include the proper startup code (initparam(argv,defv)),
the worker routine nemo_main() itself, and the stop code (finiparam()). The
above section of code would then be replaced by a mere:

nemo_main()

{

. . .

This has the obvious advantage that various NEMO related administrative de-
tails are now hidden from the application programmers, and occur automati-
cally. Remember that standard main() already shields the application program-
mer from a number of tedious setups (e.g. stdio etc.). Within NEMO we have
taken this one step further. The example given later in Section 6.3.3 also uses
the technique of calling the main entry point nemo_main().

Once the user interface has been initialized, keyword values may be obtained
at any point during execution of the program by calling getparam(), which
returns a string5:

if (streq(getparam("n"),"0")

printf(" You really mean zero or octal?\n");

There is a whole family of getXparam() functions which parse6 the string in a
value of one of the basic C types int, long, bool, and real. It returns that
value in that type:

#include <getparam.h> /* defines ``int getiparam()'' */

. . .

int nbody;

. . .

5note that ANSI rules say you can't write to this location in memory if they are direct
references to string defv[]; this is something that may well be �xed in a future release

6Depending on compiler switches at installation the getXparam parsing includes full ex-
pressions

66 CHAPTER 6. INTRODUCTION

if ((nbody = getiparam("n")) <= 0) {

printf("Cannot handle %d particles\n",nbody);

exit(0);

}

Finally, there is a macro called getargv0(), which returns the name of the
calling program, mostly used for identi�cation:

if (getbparam("quit"))

error("%s: early quit", getargv0());

This is very useful in library routines, who normally would not be able to know
who called them. Actually, NEMO's error function already uses this technique,
since it cannot know the name of the program by whom it was called. The error
function prints a message, and exits the program.

More detailed information can also be found in the appropriate manual page:
getparam(3NEMO) and error(3NEMO).

6.2.3 Advanced User Interface and String Parsing

Here we describe setparam to add some interactive capabilities in a standard way
to NEMO. Values of keywords should only be accessed and modi�ed this way.
Since keywords are initialized/stored within the source code, most compilers
will store their values in a read-only part of data area in the executable image.
Editing them may cause unpredictable behavior.

If a keyword string contains an array of items of the same type, one can use
either nemoinpX or getXrange, depending if you know how many items to
expect in the string. The getXrange routines will allocate a new array which
will contain the items of the parsed string. If you do already have a declared
array, and know that all items will �t in there, the nemoinpX routines will su�ce.

An example of usage:

double *x = NULL;

double y[NYMAX];

int nxret, nyret;

int nxmax=0;

nyret = nemoinpd(getparam("y"), y, NYMAX);

nxret = getdrange(getparam("x"), &x, &nxmax);

6.2. THE NEMO MACRO PACKAGES 67

In the �rst call the number of elements to be parsed from an input keyword y=

is limited to NYMAX, and is useful when the number of elements is expected to
be small or more or less known. The actual number of elements returned in the
array y[] is nyret.

When the number of elements to be parsed is not known at all, or one needs
complete freedom, the dynamic allocation feature of getdrange can be used.
The pointer x is initialized to NULL, as well as the item counter nxmax. After
calling getdrange, x will point to an array of length nxmax, in which the �rst
nxret element contain the parsed values of the input keyword x=. Proper re-
allocation will be done when a larger space is need on subsequent calls.

Both routines return negative error return codes, see nemoinp(3NEMO).

More complex parsing is also done by calling burststring �rst to break a string
in pieces, followed by a variety of functions.

6.2.4 Alternatives to nemo_main

It is not required for your program to de�ne with nemo_main(). There are cases
where the user needs more control. An example of this is the falcON N-body
code in $NEMO/use/dehnen/falcON. A header �le (see e.g. inc/main.h) now
de�nes main, instead of through the NEMO library:

// in main.h:

extern string defv[];

extern string usage;

namespace nbdy {

char version [200]; // to hold version info

extern void main(); // to be defined by user

};

int main(int argc, char *argv[]) // ::main()

{

snprintf(nbdy::version,200,"VERSION=" /*..*/); // write version info

initparam(argv,defv); // start NEMO

nbdy::main(); // call nbdy::main()

finiparam(); // finish NEMO

}

and the application includes this header �le, and de�nes the keyword list in the
usual way :

// in application.cc

68 CHAPTER 6. INTRODUCTION

#include <main.h>

string defv[] = { /*...*/, nbdy::version, NULL }; // use version info

string usage = /*...*/ ;

void nbdy::main() { /*...*/ } // nbdy::main()

6.2.5 �lestruct.h

The �lestruct package provides a direct and consistent way of passing data be-
tween NEMO programs, much as getparam provides a way of passing (command
line) arguments to programs. For reasons of economy and accuracy, much of
the data manipulated by NEMO is stored on disk in binary form. Normally,
data stored this way is completely unintelligible, except to specialized programs
which create and access it. Furthermore, this approach to data handling tends
to be very brittle: a trivial addition or alteration to the data stored in such a
�le can force the tedious and error-prone revision of many programs. To get
around these problems and provide an explicit, �exible, and structured method
of storing binary data, we developed a collection of general purpose routines to
access binary data �les.

From the programmers point of view, a structured binary �le is a stream of
tagged data objects. These objects come in two classes. An item is a single
instance or a regular array of one of the following C primitive types: char,

short, int, long, float or double. A set is an unordered sequence of items
and sets. This de�nition is recursive, so fully hierarchical �le structures are
allowed, and indeed encouraged. Every set or item has a name tag associated
with it, used to label the contents of a �le and to retrieve objects from a set.
Data items have a type and array dimension attributed associated with them as
well. This of course means that there is a little overhead, which may become too
large if many small amounts of data are to be handled. For example, a snapshot
with 128 bodies (created by mkplummer) with double precision masses and full 6
dimensional phase space coordinates totals 7425 bytes, whereas a straight dump
of only the essential information would be 7168 bytes, a mere 3.5% overhead.
After an integration, with 9 full snapshots stored and 65 snapshots with only
diagnostics output, the overhead is much larger: 98944 bytes of data, of which
only 64512 bytes are masses and phase space coordinates: the overhead is 53%
(of which 29% though are the diagnostics output, such conservation of energy
and angular momentum, cputime, center of mass, etc.).

The �lestruct package uses ordinary stdio(3) streams to access input and output
�les; hence the �rst step in using �lestruct is to open the �le streams. For this
job we use the NEMO library routine stropen(), which itself is not part of

6.2. THE NEMO MACRO PACKAGES 69

�lestruct. stropen(name,mode) is much like fopen() of stdio, but slightly
more clever; it will not open an existing �le for output, unless the mode string is
"w!". An additional oddity to stropen is that it treats the dash �lename "-",
as standard in/output,7 and "s" as a scratch �le. Since stdio normally �ushes
all bu�ers on exit, it is often not necessary to explicitly close open streams,
but if you do so, use the matching routine strclose(). This also frees up
the table entries on temporary memory used by the �lestruct package. As in
most applications/operating systems a task can have a limited set of open �les
associated with it. Scratch �les are automatically deleted from disk when they
are closed.

Having opened the required streams, it is quite simple to use the basic data I/O
routines. For example, suppose the following declarations have been made:

#include <stdinc.h>

#include <filestruct.h>

stream instr, outstr;

int nbody;

string headline;

#define MAXNBODY 100

real mass[MAXNBODY];

(note the use of the stdinc.h conventions). And now suppose that, after some
computation, results have been stored in the �rst nbody components of the mass
array, and a descriptive message has been placed in headline. The following
piece of code will write the data to a structured �le:

outstr = stropen("mass.dat", "w");

put_data(outstr, "Nbody", IntType, &nbody, 0);

put_data(outstr, "Mass", RealType, mass, nbody, 0);

put_string(outstr, "Headline", headline);

strclose(outstr);

Data (the 4th argument in put_data, is always passed by address, even if one
element is written. This not only holds for reading, but also for writing, as is
apparent from the above example. Note that no error checking is needed when
the �le is opened for writing. If the �le mass.dat would already have existed,
error() would have been called inside stropen() and aborted the program.
Names of tags are arbitrary, but we encourage you to use descriptive names,

7Older versions of �lestruct cannot handle binary �les in pipes, since �lestruct uses fseek(3)

70 CHAPTER 6. INTRODUCTION

although an arbitrary maximum of 64 is enforced by chopping any incoming
string.

The resulting contents of mass.dat can be viewed with the tsf utility:

% tsf mass.dat

int Nbody 010

double Mass[8] 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

char Headline[20] "All masses are equal"

Note the octal representation 010=8 of Nbody. **OLD**

It is now trivial to read data from this �le:

instr = stropen("mass.dat", "r");

get_data(instr, "Nbody", IntType, &nbody, 0);

get_data(instr, "Mass", RealType, mass, nbody, 0);

headline = get_string(instr, "Headline");

strclose(instr);

Note that we read the data in the same order as they were written.

During input, the �lestruct routines normally perform strict type-checking; the
tag, type and dimension supplied to get_data() must match the attributes
of the data item, written previously, exactly. Such strict checking helps pre-
vent many common errors in using binary data. Alternatively, you can use
get_data_coerced(), which is called exactly like get_data(), but intercon-
verts float and double values8.

To provide more �exibility in programming I/O, a series of related items may
be hierarchically wrapped into a set:

outstr = stropen("mass.dat", "w");

put_set(outstr, "NotASnapShot");

put_data(outstr, "Nbody", IntType, &nbody, 0);

put_data(outstr, "Mass", RealType, mass, nbody, 0);

put_string(outstr, "Headline", headline);

put_tes(outstr, "NotASnapShot");

strclose(outstr);

8The implementors of NEMO will not be held responsible for any loss of precision resulting
from the use of this feature.

6.2. THE NEMO MACRO PACKAGES 71

Note that each put_set()must be matched by an equivalent put_tes(). For in-
put, corresponding routines get_set() and get_tes() are used. These also in-
troduce a signi�cant additional functionality: between a get_set() and get_tes(),
the data items of the set may be read in any order9, or not even read at all. For
example, the following is also a legal way to access the NotASnapShot10:

instr = stropen("mass.dat", "r");

if (!get_tag_ok(instr,"NotASnapShot"))

error("File mass.dat is not a NotASnapShot\n");

get_set(instr,"NotASnapShot");

headline = get_string(instr, "Headline");

get_tes(instr,"NotASnapShot");

strclose(instr);

This method of ��ltering� a data input stream clearly opens up many ways of de-
veloping general-purpose programs. Also note that the bool routine get_tag_ok()
can be used to control the �ow of the program, as get_set() would call error()
when the wrong tag-name would be encountered, and abort the program.

The UNIX program cat can also be used to catenate multiple binary data-sets
into one, i.e.

% cat mass1.dat mass2.dat mass3.dat > mass.dat

The get_tag_ok routine can be used to handle such multi-set data �les. The
following example shows how loop through such a combined data-�le.

instr = stropen("mass.dat", "r");

while (get_tag_ok(instr, "NotASnapShot") {

get_set(instr, "NotASnapShot");

get_data(instr, "Nbody", IntType, &nbody, 0);

if (nbody > MAXNBODY) {

warning("Skipping data with too many (%d) items",nbody);

get_tes(instr,"NotASnapShot");

continue;

}

get_data(instr, "Mass", RealType, mass, nbody, 0);

9tagnames must now be unique within an item, as in a C struct
10This is a toy model, shown for its simplicity. The full SnapShot format is discussed in

Section 6.2.7

72 CHAPTER 6. INTRODUCTION

headline = get_string(instr, "Headline");

get_tes(instr,"NotASnapShot");

/* process data */

}

strclose(instr);

The loop is terminated at either end-of-�le, or if the next object in instr is not
a NotASnapShot.

It is easy to the skip for an item if you know if it is there:

while(get_tag_ok(instr,"NotASnapShot")) /* ??????? */

skip_item(instr,"NotASnapShot");

The routine skip_item() is only e�ective, or for that matter required, when
doing input at the top level, i.e. not between a get_set() and matching
get_tes(), since I/O at deeper levels is random w.r.t. items and sets. In
other words, at the top level I/O is sequential, at lower levels random.

A relative new feature in data access is the ability to do random and blocked ac-
cess to the data. Instead of using a single call to get_data and put_data, the ac-
cess can be sequentially blocked using get_data_blocked and put_data_blocked,
provided it is wrapped using get_data_set and get_data_tes, for example:

get_data_set (instr, "Mass", RealType, nbody, 0);

real *mass = (real *) allocate((nbody/2)*sizeof(real));

get_data_blocked(instr, "Mass", mass, nbody/2);

get_data_blocked(instr, "Mass", mass, nbody/2);

get_data_tes (instr, "Mass");

would read in the Mass data in two pieces into a smaller sized mass array. A
similar mode exists to randomly access data with an item. A current limitation
of this mode is that such access is only allowed on one item at a time. In this
mode an item must be closed before the next one can be opened in such a mode.

6.2.6 vectmath.h

The vectmath.hmacro package provides a set of macros to handle some elemen-
tary operations on two, three or general N dimensional vectors and matrices.
The dimension N can be picked by providing the package with a value for
the preprocessor macro NDIM. If this is not supplied, the presence of macros
TWODIM and THREEDIM will be checked, in which case NDIM is set to

6.2. THE NEMO MACRO PACKAGES 73

2 or 3 respectively. The default of NDIM when all of the above are absent, is 3.
Of course, the macro NDIM must be provided before vectmath.h is included
to have any e�ect. Resetting the value of NDIM after that, if your compiler
would allow it anyhow without an explicit #undef, may produce unpredictable
results.

There are also a few of the macro's which can be used as a regular C function,
returning a real value, e.g. absv() for the length of a vector.

Operations such as SETV (copying a vector) are properly de�ned for every
dimension, but CROSSVP (a vector cross product) has a di�erent meaning in
2 and 3 dimensions, and is absent in higher dimensions.

It should be noted that the matrices used here are true C matrices, a pointer
to an array of pointers (to 1D arrays), unlike FORTRAN arrays, which only
occupy a solid 2D block of memory. C arrays take slightly more memory. For
an example how to make C arrays and FORTRAN arrays work closely together
see e.g. Numerical Recipes in C by Press et al. (MIT Press, 1988).

In the following example a 4 dimensional vector is cleared:

#define NDIM 4

#include <vectmath.h>

nemo_main()

{

vector a; /* same as: double a[4] */

CLRV(a);

}

some more examples here - taken from some snap code

6.2.7 snapshots: get_snap.c and put_snap.c

These routines exemplify an attempt to provide truly generic I/O of N-body
data. They read and write structured binary data �les conforming to the overall
form seen in earlier sections. Internally they operate on Body structures; A Body

has components accessed by macros such as Mass for the mass, Pos and Vel

for the position and velocity vectors, etc.. Since get_snap.c and put_snap.c

use only these macros to declare and access bodies, they can be used with any
suitable Body structure. They are thus provided as C source code to be included
in the compilation of a program. De�nitions concerning Body's and snapshots
are obtained by including the �les snapshot/body.h and snaphot/snapshot.h.

74 CHAPTER 6. INTRODUCTION

A program which should handle a large number of particles, may decide to in-
clude a more simple Body structure, as is e.g. provided by the snapshot/barebody.h
macro �le. This body only includes the masses and phase space coordinates,
which would only occupy 28 bytes per particle (in single precision), as opposed
to the 100/104 bytes per particle for a double precision Body from the standard
snapshot/body.h macro �le. This last one contains Mass, PhaseSpace, Phi,

Acc, Aux and Key.

In the example listed under Table 6.1 the �rst snapshot of an input �le is copied
to an output �le.

Notice that the �rst argument of stropen(), the �lename, is directly obtained
from the user interface. The input �le is opened for reading, and the output
�le for writing. Some history11 is obtained from the input �le (would we not
have done this, and the input �le would have contained history, a subsequent
get_snap() call would have failed to �nd the snapshot), and the �rst snapshot
is read into an array of bodies, pointed to by btab. Then the output �le has the
old history written to it (although any command line arguments were added to
that), followed by that �rst snapshot. Both �les are formally closed before the
program then returns.

6.2.8 history.h

When performing high-level data I/O, as is o�ered by a package such as get_snap.c
and put_snap.c, there is an automated way to keep track of data history.

When a NEMO program is invoked, the program name and command line ar-
guments are saved by the initparam() in a special history database. Most
NEMO programs will write such history items to their data-�le(s) before the
actual data. Whenever a data-�le is then opened for reading, the programmer
should �rst read these data-history items. Conversely, when writing data, the
history should be written �rst. In case of the get/put_snap package:

get_history(instr);

get_snap(instr, &btab, &nbody, &time, &bits);

/* process data */

put_history(outstr);

put_snap(outstr,&btab, &nbody, &time, &bits);

Private comments should be added with the app_history() 12 When a series
of snapshot is to be processed, it is recommended that the program should only
be output the history once, before the �rst output of the snapshot, as in the
following example:

11See next section for more details on history processing
12The old name, add_history was already used by the GNU readline library

6.3. BUILDING NEMO PROGRAMS 75

get_history(instr);

put_history(outstr);

for(;;) {

get_history(instr); /* defensive but in-active */

get_snap(instr, &btab, &nbody, &time, &bits);

/* process data and decide when done */

put_snap(outstr,&btab, &nbody, &time, &bits);

}

Note that the second call to get_history(), within the for-loop, is really in-
active. If there happen to be history items sandwiched between snapshots, they
will be read and added to the history stack, but not written to the output �le,
since put_history() was only called before the for-loop. It is only a defensive
call: get_snap() would fail since it expects only pure SnapShot sets (in e�ect, it
calls get_set(instr,"SnapShot") �rst, and would call error() if no snapshot
encountered).

6.3 Building NEMO programs

Besides writing the actual code for a program, an application programmer has
to take care of a few more items before the software can be added and formally
be accepted to NEMO. This concerns writing the documentation and possibly a
Make�le, the former one preferably in the form of standard UNIX manual pages
(man(5)). We have templates for both Make�le's and manual pages. Both these
are discussed in detail in the next subsections.

Because NEMO is a development package within which a multitude of people are
donating software and libraries, linking a program can become cumbersome. In
the most simple case however (no graphics or mathematical libraries needed),
only the main NEMO library is needed, and the following command should
su�ce to produce an executable:

% cc -g -o snapprint snapprint $NEMOLIB/libnemo.a -lm

or:

% cc -g -o snapprint snapprint -lnemo -lm

The second form would only work if your cc compiler understands the -L switch,
and the $NEMOBIN/cc has installed this feature. See Appendix I how to properly
install this script.

For graphics programs a solution would be to use the YAPPLIB environment
variable.

An example of the compilation of a graphics program:

76 CHAPTER 6. INTRODUCTION

% cc -g -o snapplot snapplot.c -lnemo $YAPPLIB -lm

Each user is given a subdirectory in $NEMO/usr, under which code may be
donated which can be compiled into the running version of NEMO. Stable code,
which has been su�ciently tested and veri�ed, can be placed in one of the
appropriate $NEMO/src directories. For proper inclusion of user contributed
software a few rules in the Makefile have to be adhered to.

The bake and mknemo script should handle compilation and installation of most
of the standard NEMO cases. Some programs, like the N-body integrators, are
almost like complicated packages themselves, and require their own Make�le or
install script. For most programs you can compile it by:

% bake snapprint

or to install:13

% mknemo snapprint

6.3.1 Manual pages

It is very important to keep a manual �le (preferably in the UNIX man format)
online for every program. A program that does not have an accompanying
manual page is not complete. Of course there is always the inline help (help=)
that every NEMO program has.

To a lesser degree this also applies to the public libraries. A template ro� sample
can be found in example.8. We encourage authors to have a MINIMUM set
of sections in a man-page as listed below. The ones with a '*' are considered
somewhat less important:

NAME the name of the beast.

SYNOPSIS command line format or function prototype, include �les needed
etc.

DESCRIPTION maybe a few lines of what it does, or not does.

PARAMETERS description of parameters, their meaning and default values.
This usually applies to programs only.

EXAMPLES (*) in case non-trivial, but recommended anyhow

DEBUG (*) at what debug levels what output appears.

13this assumes you have some appropriate NEMO permissions

6.3. BUILDING NEMO PROGRAMS 77

SEE ALSO (*) references to similar functions, more info

BUGS (*) one prefers not to have this of course

TIMING (*) performance, dependence on parameters if non-trivial

STORAGE (*) storage requirements - mostly of importance when pro-
grams allocate memory dynamically, or when applicable for
the programmer.

LIMITATIONS (*) does it have any obvious limitations?

AUTHOR who wrote it (a little credit is in its place) and/or who is re-
sponsible.

FILES (*) in case non-trivial

HISTORY date, version numbers, why updated, by whom (when created)

6.3.2 Make�les

Make�les are scripts in which "the rules are de�ned to make targets", see
make(1) for many more details. In other words, the Make�le tells how to compile
and link libraries and programs. NEMO uses Make�les extensively for instal-
lation, updates and various other system utilities. Sometimes scripts are also
available to perform tasks that can be done by a Make�le.

There are basically three types of Make�les in NEMO:

1. The �rst (top) level Make�le. It lives in NEMO's root directory (normally
referred to as $NEMO) and can steer installation on any of a number of
selected machines, it includes some import and export facilities (tar/shar)
and various other system maintenance utilities. At installation it makes
sure all directories are present, does some other initialization, and then
calls Make�le's one level down to do the rest of the dirty work. The top
level Make�le is not of direct concern to an application programmer, nor
should it be modi�ed without consent of the NEMO system manager.

2. Second level Make�les, currently in $NEMO/src and $NEMO/usr, steer the
building of libraries and programs by calling Make�les in subdirectories
one more level down. Both this 2nd level Make�le and the one described
earlier are solely the responsibility of NEMO system manager. You don't
have to be concerned with them, except to know of their existence because
your top level Make�le(s) must be callable by one of the second level
Make�les. This interface will be described next.

78 CHAPTER 6. INTRODUCTION

3. Third level Make�les live in source or user directories $NEMO/src/topic

and $NEMO/usr/name (and possibly below). They steer the installation
of user speci�c programs and libraries, they may update NEMO libraries
too. The user writes his own Make�le, he usually splits up his directory in
one or more subdirectories, where the real work is done by what we could
then call level 4 or even level 5 Make�les. However, this is completely the
freedom of a user. The level 3 Make�les normally have two kinds of entry
points (or 'targets'): the user 'install' targets are used by the user, and
make sure this his sources, binaries, libraries, include �les etc. are copied
to the proper places under $NEMO. The second kind of entry point are
the 'nemo' targets and never called by you, the user; they are only called
by Make�les one directory level up from within $NEMO below during the
rebuilding process of NEMO, i.e. a user never calls a nemo target, NEMO
will do this during its installation. Currently we have NEMO install itself
in two phases, resulting in two 'nemo' targets: 'nemo_lib' (phase 1) and
'nemo_bin' (phase 2). A third 'nemo' target must be present to create
a lookup table of directories and targets for system maintenance. This
target must be called 'nemo_src', and must also call lower level Make�les
if applicable.

This means that user Make�les MUST have at least these three targets
in order to rebuild itself from scratch. In case a user decides to split up
his directories, the Make�les must also visit each of those directories and
make calls through the same entry points 'nemo_lib' and 'nemo_bin',
'nemo_src'; a sort of hierarchical install process.

For more details see the template Make�les in NEMO's sec subdirectories and
the example below in section 6.3.3.

We expect a more general install mechanism with a few more strict rules for
writing Make�les, in some next release of NEMO.

6.4. EXTENDING NEMO ENVIRONMENT 79

6.3.3 An example NEMO program

Under Table 6.2 below you can �nd a listing of a very minimal NEMO program,
�hello.c�:

and a corresponding example Make�le to install by user and nemo could look
like the one shown under Table 6.3

Note that for this simple example the Makefile actually larger than the source
code, hello.c, itself. Fortunately not every programs needs their own Make�le,
in fact most programs can be compiled with a default rule, via the bake script.
This generic make�le is used by the bake command, and is normally installed
in $NEMOLIB/Makefile, but check out your bake command or alias.

Warning: The structure of this so-called 'standard' NEMO Make�les is still
under debate, and will probably drastically change in some future release. Best
is to check some local Make�les. A possible candidate is the GNU make facility.

6.4 Extending NEMO environment

Let us now summarize the steps to follow to add and/or create new software to
NEMO. The examples below are suggested steps taken from adding Aarseth's
nbody0 program to NEMO, and we assume him to have his original stu� in a
directory �/nbody0.

1: Create a new directory, "cd $NEMO/usr ; mkdir aarseth" and inform the
system manager of NEMO that a new user should be added to the user list
in $NEMO/usr/Makefile. You can also do it yourself if the �le is writable
by you.

2: Create working subdirectories in your new user directory, "cd aarseth ;

mkdir nbody0".

3: Copy a third level Make�le from someone else, and substitute the subdirec-
tory names to be installed for you, i.e. your new working subdirectories
('nbody0' in this case): "cp ../pjt/Makefile . ; emacs Makefile".

4: Go 'home' and install, "cd �/nbody0 ; make install", assuming the Make-
�le there has the proper install targets. Check the target Make�le in the
directory $NEMO/usr/aarseth/nbody0 what this last command must have
done.

Actually, only step 1 is required. If a user cannot or does not want to con�rm
to the level 3/4 separation, he may do so, as long as the Make�le in level 3
(e.g. $NEMO/usr/aarseth/Makefile) contains the nemo_lib, nemo_bin and
nemo_src install targets. An example of adding a foreign package that way is
the GRAVSIM package , which has it's own internal structure. In the directory tree

80 CHAPTER 6. INTRODUCTION

starting at $NEMO/usr/mbellon/gravsim an example of a di�erent approach is
given. Sometimes public domain packages have been added to NEMO, and its
Make�les have been adapted slightly to the NEMO install procedure.

6.5 Programming in C++

Most relevant header �les from the NEMO C libraries have been made entrant
for C++. This means that all routines should be available through:

extern "C" {

.....

}

The only requirement is of course that the main() be in C++. For this you
have to link with the NEMO++ library before the regular NEMO library. So,
assuming your header (-I) and library (-L) include �ags have been setup, you
should be able to compile your C++ programs as follows:

% cppc -g -o test test.cc -lnemo++ -lnemo -lm

6.6 Programming in FORTRAN

Programming in FORTRAN can also be done, but since NEMO is written in C
and there is no 'standard' way to link FORTRAN and C code, such a description
is always bound to be system dependent (large di�erences exist between UNIX,
VMS, MSDOS, and UNICOS is somewhat of a peculiar case). Even within a
UNIX environment there are a number of ways how the industry has solved
this problem (cf. Alliant). Most comments that will follow, apply to the BSD
convention of binding FORTRAN and C.

In whatever language you program, we do suggest that the startup of the
program is done in C, preferably through the nemo_main() function (see Sec-
tion 6.3.3). As long as �le I/O is avoided in the FORTRAN routines, character
and boolean variables are avoided in arguments of C callable FORTRAN func-
tions, all is relatively simple. Some care is also needed for multidimensional
arrays which are not fully utilized. The only thing needed are C names of the
FORTRAN routines to be called from C. This can be handled automatically by
a macro package.

Current examples can be found in the programs nbody0 and nbody2. In both
cases data �le I/O is done in C in NEMO's snapshot(5NEMO) format, but the
CPU is used in the FORTRAN code.

6.6. PROGRAMMING IN FORTRAN 81

Examples of proposals for other FORTRAN interfaces can be found in the di-
rectory $NEMOINC/fortran.

Again this remark: the potential(5NEMO) assumes for now a BSD type f2c
interface, because character variables are passed. This has not been updated yet.
You would have to provide your own f2c interface to use FORTRAN potential
routines on other systems.

Simple FORTRAN interface workers within the snapshot interface are available
in a routine snapwork(n,m,pos,vel,...).

More description will follow

6.6.1 Calling NEMO C routines from FORTRAN

The NEMO user interface, with limited capabilities, is also available to FOR-
TRAN programmers. First of all, the keywords, their defaults and a help string
must be made available (see Section ??). This can be done by supplying them
as comments in the FORTRAN source code, as is show in the following example
listed under Table 6.4

The documentation section between C+ and C- can be extracted with a NEMO
utility, ftoc, to the appropriate C module as follows:

% ftoc test.f test_main.c

after which the new test_main.c �le merely has to be included on the com-
mandline during compilation. To avoid having to include FORTRAN libraries
explicitly on the commandline, easiest is to use the f77 command, instead of
cc:

% f77 -o test test.f test_main.c -I$NEMOINC -L$NEMOLIB -lnemo

This only works if your operating supports mixing C and FORTRAN source
code on one commandline. Otherwise try:

% cc -c test_main.c

% f77 -o test test.f test_main.o -L$NEMOLIB -lnemo

where the NEMO library is still needed to resolve the user interface of course.

The other alternative would be:

% f77 -c test.f

% cc -o test test.o test_main.c -L$NEMOLIB -lnemo \

-lF77 -lI77 -lU77 -lm

82 CHAPTER 6. INTRODUCTION

with various possible complications with the new FORTRAN 1.3+ compiler on
SUN workstations. Browsing with nm(1) through UNIX library �les to �nd
unde�ned reference might be the only alternative left to �nd out where the
system has hidden them. See the FORLIBS environment variable de�ned in
NEMORC startup �le.

6.6.2 Calling FORTRAN routines from NEMO C

No o�cial support is needed, although for portablility it would be nice to include
a header �le that maps the symbol names and such.

6.7 Debugging

Apart from the usual debugging methods that everybody knows about, NEMO
programs usually have the following additional properties which can cut down
in debugging time. If not conclusive during runtime, you can either decide
to compile the program with debugging �ags turned on, and run the program
through the debugger, or add more dprintf or error function calls:

• During runtime you can set the value for the debug= (or use the equivalent
DEBUG environment variable) system keyword to increase the amount of
output. Note that only levels 0 (the default) through 9 are supported. 9
should produce a lot of output.

• During runtime you can set the value for the error= (or use the equiva-
lent ERROR environment variable) system keyword to bypass a number of
fatal error messages that you know are not important. For example, to
overwrite an existing �le you would need to increase error by 1.

6.7. DEBUGGING 83

Table 6.1: $NEMO/src/tutor/snap/snap�rst.c

1: #include <stdinc.h> /* general I/O */

2: #include <getparam.h> /* for the user interface */

3: #include <vectmath.h> /* to define NDIM */

4: #include <filestruct.h>

5:

6: #include <snapshot/snapshot.h> /* Snapshot macros */

7: #include <snapshot/body.h>

8: #include <snapshot/get_snap.c> /* and I/O routines */

9: #include <snapshot/put_snap.c>

10:

11: string defv[] = {

12: "in=???\n Input snapshot",

13: "out=???\n Output snapshot",

14: "VERSION=0.0\n 21-jul-93 PJT",

15: NULL,

16: };

17:

18: string usage="copy the first snapshot";

19:

20: nemo_main()

21: {

22: Body *btab = NULL; /* pointer to the whole snapshot */

23: int nbody, bits;

24: real tsnap;

25: stream instr, outstr;

26:

27: instr = stropen(getparam("in"),"r");

28: outstr = stropen(getparam("out"),"w");

29: get_history(instr);

30: get_snap(instr, &btab, &nbody, &tsnap, &bits);

31: put_history(outstr);

32: put_snap(outstr,&btab, &nbody, &tsnap, &bits);

33: strclose(instr);

34: strclose(outstr);

35: }

84 CHAPTER 6. INTRODUCTION

Table 6.2: $NEMO/src/tutor/hello/hello.c

1: #include <stdinc.h> /* standard (NEMO) definitions */

2: #include <getparam.h> /* user interface */

3:

4: string defv[] = { /* standard keywords and default values */

5: "verbose=true\n Verbosity level (t|f)", /* key1 */

6: "VERSION=1.2\n 25-may-92 PJT", /* key2 */

7: NULL, /* standard terminator of defv[] vector */

8: };

9:

10: string usage = "Example NEMO program 'hello'"; /* usage text */

11:

12: nemo_main () /* standard start of any NEMO program */

13: {

14: bool verbose; /* declaration of local var. */

15:

16: verbose = getbparam("verbose"); /* get that keyword */

17: printf("Hello NEMO!\n"); /* do some work ... */

18: if (verbose) /* and perhaps more */

19: printf("Bye then.\n");

20: }

6.7. DEBUGGING 85

Table 6.3: Sample make�le - cf. $NEMOLIB/Make�le
1: # template Makefile to install NEMO binaries and libraries....

2: # Usually installed as $NEMOLIB/Makefile and use by the 'bake' replace

3: # ment of 'make'

4:

5: CFLAGS = -g

6: FFLAGS = -g -C -u

7:

8: #

9: L = $(NEMOLIB)/libnemo.a

10: OBJFILES=

11: BINFILES=

12: TESTFILES=

13: # Define an extra SUFFIX for our .doc file

14: .SUFFIXES: .doc

15:

16: .c.doc: $*

17: $* help=t > $*.doc

18: @echo "### Normally this $*.doc file would be moved to NEMODOC"

19: @echo "### You can also use mkpdoc to move it over"

20:

21: help:

22: @echo "Standard template nemo Makefile"

23: @echo " No more help to this date"

24:

25: clean:

26: rm -f core *.o *.a *.doc $(BINFILES) $(TESTFILES)

27:

28: cleanlib:

29: ar dv $(L) $(OBJFILES)

30: ranlib $(L)

31:

32: $(L): $(LOBJFILES)

33: echo "*** Now updating all members ***"

34: ar ruv $(L) $?

35: $(RANLIB) $(L)

36: rm -f $?

37:

38: lib: $(L)

39:

40: bin: $(BINFILES)

41:

42: # NEMO compile rules

43: .o.a:

44: @echo "***Skipping ar for $* at this stage"

45:

46: .c.o:

47: @echo "***Compiling $*"

48: $(CC) $(CFLAGS) -c $<

49:

50: .c.a:

51: @echo "***Compiling $* for library $(L)"

52: $(CC) $(CFLAGS) -c $<

53:

54: .c:

55: @echo "***Compiling and linking $*"

56: $(CC) $(CFLAGS) -o $* $*.c $(BL) $(L) $(AL) -lm

57:

58: .o:

59: @echo "***Compiling and linking $*"

60: $(CC) $(CFLAGS) -o $* $*.o $(BL) $(L) $(AL) -lm

61:

62: # any non-standard targets follow here

63:

86 CHAPTER 6. INTRODUCTION

Table 6.4: $NEMO/src/kernel/fortran/test.f

1: C

2: C Test program for NEMO's footran interface

3: C 25-jun-91 1.0

4: C 24-may-92 1.1

5: C 21-jul-93 1.2 for manual src file

6: C Note the special comments C: C+ C- for 'ftoc'

7: C: Test program for NEMO's footran interface

8: C+

9: C in=???\n Required (dummy) filename

10: C n=1000\n Test integer value

11: C pi=3.1415\n Test real value

12: C e=2.3\n Another test value

13: C text=hello world\n Test string

14: C VERSION=1.1\n 24-may-92 PJT

15: C-

16: C

17: SUBROUTINE nemomain ! note the name !

18: C

19: C#include "getparam.inc" ! if cpp is used to get at $NEMOINC

20: INCLUDE 'getparam.inc' ! use defs from $NEMOINC

21:

22: INTEGER n

23: DOUBLE PRECISION pi,e

24: CHARACTER text*40, file*80

25:

26: file = getparam('in') ! get the CL parameters

27: n = getiparam('n')

28: pi = getdparam('pi')

29: e = getdparam('e')

30: text = getparam('text')

31:

32: WRITE (*,*) 'n=',n,' pi=',pi,' e=',e,' text='//text

33:

34: END

Chapter 7

References

"The Unix C Shell Field Guide" - (Anderson, G. and Anderson, P., Prentice
Hall, 1988).

"A Hierarchical O(N log N) Force-Calculation" - Barnes, J.E. and Hut, P. (Na-
ture, Vol. 324, pp 446 1986).

The FITS tables extension. - Harten R.H., Grosbol, P., Greisen, E.W. and
Wells, D.C. (A&A Suppl. 73, 365, 1988)

"Hierarchical N-body Methods" - L. Hernquist, (Computer Physics Communica-
tions, Vol. 48, p. 107, 1988.)

"Computer Simulation Using Particles" R. W. Hockney and J. W. Eastwood
(Adam Hilger; Bristol and Philadelphia; 1988)

"The Numerical Solution of the N-body Problem" - (L. Greengard. Comp. in
Phys. pp. 142, mar/apr 1990.)

"Use of Supercomputers in Stellar Dynamics" - (S.M. McMillan and P. Hut.
Berlin: Springer-Verlag 1987).

"The Art of N-body Building" J.A. Sellwood - (Ann. Rev. Astron. Astrophys.
Vol. 25, pp. 151 1987).

"FITS � " - (Wells et al., A&A Suppl. 44, 363. 1981)

"E�ective Fortran" - Metcalf. Oxford: Clarendon Press (1985).

"Numerical Recepies" - Press et. al. ...

"Galactic Dynamics" - Binney, J. and Tremaine, S. (Princeton U. Press; Prince-
ton; 1987)

87

88 CHAPTER 7. REFERENCES

Part IV

Appendices

89

Appendix A

Setting Up Your Account

This Appendix describe how you have to modify your UNIX environment in
order to use NEMO. It requires nothing more than a few additions to your
standard .cshrc startup �le. We do however di�erentiate here between a
static and dynamic setup.

Overall installation of the NEMO package will be discussed separately, in Ap-
pendix I and requires some knowledge of the UNIX operating system.

A.1 Static Setup

A static setup provides NEMO automatically every time you log in and may
consist of up to four modi�cations to the .cshrc �le:

(1) The environment variable NEMO1 should be de�ned to tell NEMO where
its root directory is. This environment variable is used to derive many sub-
sequent references to locations of data �les, documentation, program binaries,
libraries etc. Add the following line to your .cshrc �le before any other refer-
ences to NEMO are made, e.g.:

setenv NEMO /usr/nemo

(or whatever your local root directory for NEMO is).

(2) The optional environment variable NEMOHOST should be set to refer to
the HOSTTYPE you want to run. If not present, NEMO will attempt to resolve
it. Some UNIX shells de�ne an environment variable HOSTTYPE, which could
also be used.

1The environment variable NEMOPATH is from V1 is now invalid

91

92 APPENDIX A. SETTING UP YOUR ACCOUNT

(3) Add the statement

source $NEMO/NEMORC

to your .cshrc �le.

(3) Your search path should include $NEMOBIN, preferably in the beginning of
the path de�nition. The reason for this speci�c location is that we often use
a slightly modi�ed cc(1) compiler (script), e.g., you may then have something
like

set path=(. $NEMOBIN /bin /usr/bin /usr/local/bin)

in your .cshrc �le.

If you do this the very �rst time, make these modi�cations permanent for your
current terminal session, e.g.:

% source .cshrc ; rehash ; echo $PATH

A.2 Dynamic Setup

A dynamic setup provides NEMO only after a startup load command, usually
dubbed nemo, issued during an interactive terminal session. A script $NEMO/nemo.rc
is available for this purpose. The following two modi�cation are then necessary
to your .cshrc �le, instead of the above described procedure:

setenv NEMO /usr/nemo

alias nemo 'source $NEMO/nemo.rc'

Note the single quotes, to allow so-called late evaluation. Whenever the com-
mand �nemo� is issued, the NEMO environment is loaded with whatever the
current value of $NEMO is. After this has been done, the nemo alias is replaced
by another one to prevent re-entry. The alias omen will unload NEMO from the
environment.

A.3 Tailoring

If you create a �le .nemorc in your home directory, it will be read after the
standard $NEMO/NEMORC (or nemo.rc) �le, and this is where you would want to
add your private NEMO additions, or even override the things you don't want.

Appendix B

User Interface

This Appendix overviews the basic command-line interface of NEMO programs.
Front-ends, such as mirtool and the miriad shell are also described here.

Every NEMO program accepts input through a user supplied parameter list of
'keyword=value' arguments. In addition to these program keywords, there
are a number of globally de�ned system keywords, known to every NEMO
program.

B.1 Program keywords

Program keywords are unique to a program, and need to be looked up in the
online manual page or by using the help= system keyword (dubbed the inline
help). Parsing of �values� is usually done, though sometimes primitive. Program
keywords also have the ability to read the value(s) of a keyword from a �le
through the keyword=@file construct. This is called the include keyword
�le, and is very handy for long keyword values, not having to escape shell
characters etc.

B.2 System keywords

The 'hidden' system keywords, although overridden by any program de�ned
counterpart, can also be set by an equivalent environment variable (in upper
case), and are:

help= Sets the help level to a program. As with all system keywords, their
value can be �xed for a session by setting the appropriate environment

93

94 APPENDIX B. USER INTERFACE

variable in upper case, e.g. "setenv HELP 5". By using the keyword
form, the value of the environment variable will be ignored.

The individual help levels are numeric and add up to combine functional-
ity, and are hence powers of 2:

1 Remembers previous usage of a program, by maintaining a keyword
�le from program to program. These �les are normally stored in the
current directory, but can optionally be stored in one common direc-
tory if the environment variable NEMODEF1 is set. The keyword
�les have the name "progname".def, e.g. snapshot.def2. When
using this lowest help-level it is still possible to use UNIX I/O redi-
rection. This help level reads, as well as writes the keyword �le
during the program execution; hence the user needs both read and
write permission in the keyword directory. As can also be seen, pro-
grams cannot run in parallel while using this help-level: they might
compete for the same keyword �le. Within the simple commandline
interface it is not possible to maintain a global keyword database, as
is e.g. the case in AIPS; you would have to use the miriad shell.

2 prompts the user for a (new) value for every keyword; it shows the
default (old) value on the prompt line, which can then be edited. It
is not possible to combine this level with UNIX I/O redirection. By
combining the previous helplevel with this one, previous values and
modi�ed ones are maintained in a keyword �le.

4 provides a simple fullscreen menu interface, by having the user edit
the keyword �le. The environment variable EDITOR can be used
to set any other editor than good old vi(1). It is not possible to
combine this level with UNIX I/O redirection.

8,16,... although not processed, it is reserved for the next levels of menu
interface.

Example: �help=3� will remember old keywords in a local keyword
�le, prompt you with new values, and puts the new values in the
keyword �le for the next time. The �help=5� option happen to be
somewhat similar to the way AIPS and IRAF appear to the user.

Help levels can also include an alpha-string, which generally display
the values of the keyword, their default values or their help strings.

? lists all these options, as a reminder. It also displays the version of
the getparam user interface package.

h list all the keywords, plus a help string what the keywords does/expects.
This is really what we call the inline manual or inline help.

a list all arguments in the form keyword=value.

1mirtool also uses this environment variable
2This may result in long �lenames, Unix SYS5 allows only 14 characters - a di�erent

solution is needed here

B.2. SYSTEM KEYWORDS 95

p,k list parameters (keywords) of all arguments in the form keyword.

d,v list defaults (values) of all arguments in the form value.

n add a newline to every keyword/value string on output. In this way
a keyword �le could be build manually by redirecting this output.

t output a documentation �le according to the %N,%A speci�cations
of miriad3. Is mainly intended to be used by scripts such as mktool.
The procedure in NEMO to update a .doc �le would be:

% program help=t > $NEMODOC/program.doc

or:

% mktool program

if the script mktool has been installed4

q quit, do not start program. Useful when the helpstring contains
options to print.

Example: key=val help=1q rede�nes a keyword in the keyword�le,
but does not run the program. This is also a way to 'repair' a key-
word �le, when the program has been updated with new keywords.
key=val help=1aq rede�nes the keyword, shows the results but
does still not run the program. Finally, key=val help=1a rede�nes
a keyword, shows the result and then runs the program.

host= Runs the program on a remote host. It depends on the implementation
of software on local as well as remote host if and how this option works.
Among SUN systems the rsh command is used, and assumes a shared
disk with the same absolute pathname (NFS). Future implementations
will have to use more sophisticated RPC (Remote Procedure Call) or X11
interfaces for distributed networking. No environment variable is used
here.

debug= Changes the debug output level. The higher the debug level, the
more output can appear on the standard error output device stderr. The
default value is either 0 or the value set by the DEBUG environment
variable. The use of the debug= keyword will override your default setting.
A value of '0' for debug may still show some warning messages. Setting
debug to -1 will prevent even those warning/debug messages. Legal values
are 0 through 9. Values of DEBUG higher than 9 are for system experts
usage only. You may get some weird screen output. Values larger than 5
cause an error to coredump, which can then be used with debug utilities
like abd(1) and dbx(1).

error= Speci�es how many times the fatal error routine can be bypassed. The
ERROR environment variable can also be set for this. The default, if
neither of them present, is 0.

3Both mirtool and miriad need such a doc-�le to lookup keywords and supply help
4Obviously this is priviliges to NEMO superusers only

96 APPENDIX B. USER INTERFACE

yapp= De�nes the device to which graphics output is send. Currently only
interpreted for a limited number of yapp devices. Some yapp devices
do not even listen to this keyword. Check yapp(5NEMO) or your local
NEMO guru which one is installed. The default device is either 0 or the
value set by the YAPP environment variable.

B.2.1 Yapp_mongo

Valid devices in yapp_mongo are (see also MONGO-875 users manual)
numbers 1..6, -6..-1:

1. Retrographics 640 -1. Versatec (portrait)

2. DEC VT125 -2. Versatec (landscape)

3. Tektronix 4010 -3. Printronix (portrait)

4. Grinell 270 -4. Printronix (landscape)

5. HP 2648A -5. Postscript (portrait)

6. Sun Windows -6. Postscript (landscape)

-7. Postscript (square portrait) ***

Make sure you have set:

setenv MONGOPATH /usr/local/lib/mongo

setenv MONGOFILES $MONGOPATH/mongofiles.dat

or appropriate private ones, or use whatever your system manager has
provided for.

B.2.2 Yapp_sunview

For the yapp_sv (Sunview) interface the absolute value of the yapp= key-
word gives the (square) size in pixels of the window created. The default is
128. For positive value the window will disappear when plclose(3NEMO)
is called at the termination of the graphics operations (essential for movie
production). For negative values it remains displayed until a Carriage
Return is given.

B.2.3 Yapp_pgplot

A graphics device in PGPLOT6 is de�ned by preceding it with a slash, in
the same way as is done in PGPLOT itself. Optional parameters can be
supplied before the slash. The following list gives an overview of some of
the available devices (your list may be a lot shorter (see '?' in list below):

5MONGO is a copyrighted program by John Tonry
6PGPLOT is a copyrighted public domain graphics library written by Tim Pierson

B.2. SYSTEM KEYWORDS 97

? Get a list of all currently defined graphics devices

x,y/sun Sunview, (x,y) = sizes in inches [8,8]

file/ps Landscape Postscript, file=filename [pgplot.ps]

file/vps Portrait Postscript, file=filename [pgplot.ps]

/null Null device

/xwindow X-windows

/xdisp pgdisp or figdisp server

/tek4010 Tektronix

/tk4100

/gterm IRAF Gterm window within sunview

/retro Retrographics

/file PGPLOT Metafile

/gf Graphon

/vt125

/printronix

/peritek

/ws4 Landscape

/tfile

/pk

BUGS:When a non-zero help level is used, one cannot specify system keywords,
other than by specifying them through environment variables,

Also consult manual pages such as getparam(3NEMO) and yapp(5NEMO).

B.2.4 Yapp_sm

A graphics device in sm7 is de�ned by the same text string as you would issue
it in interactive mode. The sm command list devices will list all currently
compiled device drivers. You need a �le .sm in your home directory, or take
what your system manager has provided for.

7SM is a copyrighted program and subroutine library by Robert Lupton and Patricia
Monger

98 APPENDIX B. USER INTERFACE

B.3 The REVIEW section

By setting the REVIEW environment variable a NEMO program is always
put into the REVIEW section just before the start of the actual execution of
the program (the end of the initparam(3NEMO) routine). This functionality is
quite similar to using the helplevel help=4 (see previous Section).

A NEMO program can also be interrupted, using the quit signal (see signal(2)),
into the REVIEW section, although the program must be adapted to get key-
word information through getparam(3NEMO) and not through it's own local
database, in order for modi�ed keywords to take e�ect. This does not hold for
the system keywords, whose new value is always correctly interpreted by the
program.

In the REVIEW section the prompt is �REVIEW� and the following com-
mands are understood:

exit, quit, end Exit the program (ungracefully).

stop Gracefully end the program, but �rst goes through finiparam() (see
getparam(3NEMO)) to update the keyword �le if the helplevel includes 1.

set [key=[value]] Set a new value for a program keyword (set key=value),
where value may also be blank, or display the contents of a program
keyword (set key).

show key Show the value of a program keyword.

keys Show the values of all program keywords.

syskeys Show the values of all system keywords.

set syskey[=value] Set a new value for a system keyword set syskey=value

or display its current contents set syskey.

time Show the cputime (in minutes) used so far.

!cmd Pass a command cmd to the shell.

go,continue Continue execution of the program.

version Display version of initparam() compiled into program.

?, help Displays all commands and their format.

When the system keyword debug is non-zero, the �REVIEW� prompt also in-
cludes the process identi�cation number of the process.

B.4. MIRIAD 99

B.4 Miriad

The miriad front-end works on any simple terminal, and is not restricted to a
particular operating system or computer type. To invoke1 miriad, type:

> miriad

The usual system prompt will be replaced by the Miriad% prompt:

Miriad%

and miriad will read a �le, lastexit, with the values of all parameters saved
when you last exited miriad (see EXIT below). This �le will be created/read
in/from your current working directory.

We shall now describe all miriad commands in more detail. A summary of the
commands, and their syntax, is given in Table B.1 at the end of this section.
Commands not known to miriad are simply passed to your host operating
system. This means on VMS the command DIR, and on UNIX the command
ls, would still be usable and valid commands2.

INP, GO, and TASK

To inspect the inputs of a task, as well as to select the task, e.g. histo type

Miriad% inp histo

miriad will show the parameters of the task along with the values, if any,
previously set. For example, if, the �rst time you run miriad, you type:

Miriad% inp histo

miriad will reply by writing:

Task: histo

in =

region =

range =

nbin =

and will replace the Miriad% prompt with a task prompt

1Optional command line switches are summarized in Table B.2
2UNIX aliases are not supported in miriad

100 APPENDIX B. USER INTERFACE

histo%

indicating that you have chosen the task histo. You can also choose the task
histo without using inp by typing:

Miriad% task histo

miriad will then replace the Miriad% prompt with the histo% prompt, but the
inputs will not be printed out. In either way a parameter can be set by typing
any of:

histo% in=gauss

histo% set in gauss

(the �rst form being preferred). In either case retyping:

histo% inp

will result in miriad replying:

Task: histo

in = gauss

region =

range =

nbin =

Tasks are run either by typing go taskname at the Miriad% prompt (advisable
only if you know you like the inputs) or by typing go at the taskname% prompt.
Thus, in the above example, typing:

histo% go

would result in the task histo running with in=gauss as the only assigned
paramater (all the other parameters were set to their default values).

Any task can be run regardless of the chosen task, merely by typing:

Miriad% go itemize

miriad then executes the task itemize (using whatever input parameters it
�nds from the lastexit �le or a previous run) and changes the default task
and prompt to:

itemize%

B.4. MIRIAD 101

GOB

The gob command does exactly the same as the go command, except it runs
the task in the background (UNIX), or spawns the task (VMS). In either way,
miriad is immediately ready for new commands, although the output of the
task just started may still return output to the terminal.

HELP and ?

When typed at the Miriad% prompt, the help command gives a list of all the
available tasks. This feature is useful when you use miriad for the �rst time.
When typed at the taskname% prompt, the help command gives information on
the chosen task. As with other commands, typing

histo% help itemize

displays the help �le for itemize but does not change the default taskname (i.e.
histo). To display the list of available tasks from a taskname % prompt, type
help ?.

The ? command lists general help about the miriad interface, including most
of the information contained in this section.

EXIT, END, QUIT

exit and end both exit miriad, and, if any parameter values have been changed
from the previous time you ran miriad, all parameter values are saved in a �le
lastexit. The parameter values from this �le are read in automatically when
you next run miriad. quit exits miriad without saving the present parameter
values in lastexit. This command is useful if you have changed parameter
values you do not wish to save.

UNSET and RESET

It is often convenient to assign a parameter value to the default. This assignment
is accomplished with the command unset. For example, if the task histo had
been run with inputs:

in = gauss

region =

range = 0,1

nbin = 10

102 APPENDIX B. USER INTERFACE

but you wanted to run histo with the default for nbin, you would type:

histo% unset nbin

Multiple parameters can be unset on the same line. Thus, to assign both range

and nbin to their default values, you would type:

histo% unset range nbin

Then, typing:

histo% inp

will result in miriad replying

Task: histo

in = gauss

region =

range =

nbin =

The command reset can be used to unset all parameter values (not just those
of the present task selected); use with caution.

SAVE and LOAD

As noted above, when you exit miriad, all your inputs will be saved in the
�le lastexit. However, many parameters are used by more than one program
and, at present, only one value of each parameter is allowed throughout miriad
(global parameters). The command save writes the current parameter values
to a default �le (taskname.def if the task taskname has been selected) or to a
user speci�ed �le. This default �le (or a user speci�ed �le) can be read in using

the command �load. Note that save writes out all parameter values, not just
those for the speci�c task chosen. Example:

histo% save

histo% save histo1.pars

In the �rst case the parameters are saved in a �le histo.def, whereas the second
case saves them in a user speci�ed �le histo1.pars.

B.4. MIRIAD 103

VIEW

Rather than type in parameter assignments one at a time, it is possible to invoke
a text editor (EDT in VMS, vi or the editor given by the EDITOR environment
variable in UNIX) to edit the taskname.def �le. As usual, if no taskname is
given, view will edit the taskname.def �le indicated by the taskname% prompt.
If a taskname is speci�ed, e.g.:

histo% view itemize

the existing �le itemize.def is edited, and the selected task is changed to
itemize. Note that if the itemize.def �le did not exists, one is created.

CD

The cd (change directory) command1 allows you to change your working direc-
tory from within miriad. Note that the �le lastexit is written to your current
working directory, but that you will exit miriad to the directory you started it
from. You can always �nd out your current working directory with a local host
command, i.e. pwd on UNIX and SHO DEF on VMS. perhaps cd with no args
should say current working dir

VERSION

The version command displays the which version of miriad you are running,
and how it was compiled2 If you have a problem with miriad, especially one
you have never seen before, check if the version of miriad has changed. If so,
you may want to tell you local MIRIAD manager about the problem, if you
suspect that it is related to the new version of miriad.

B.4.1 Command and command line switches overview

The two tables summarize all of miriad's commands (Table B.1) and the op-
tional command line switches (Table B.2). As an example if you want to keep all
default �les located globally accross the �lesystem, independant of the project
you're working on, you could create a subdirectory in you home directory, and
use that when you startup miriad. A UNIX example:

% mkdir ~/def

1Note that the miriad cd command does not understand special UNIX symbols
2This latter information is useful only for the advanced user, so if you don't understand it,

don't worry.

104 APPENDIX B. USER INTERFACE

Table B.1: Miriad shell command overview
Command Syntax Comments

= par = value assignment (see also deprected SET)
! !cmd par1 par2 ... run a cmd in parent shell
? help
� C attempt to interrupt current running task
alias alias [name] [value] set or show aliases
cd cd directory change directory
exit exit exit miriad, and save parameters in lastexit
go go [taskname] start up task
gob gob [taskname] start up task in background
help help [taskname] online help on task
inp inp [taskname] overview inputs
input input cmd�le read commands from a command �le
load load [key�le] load task parameters from key�le
quit quit quit miriad, and does not save lastexit
reset reset reset all variables
save save [key�le] save task parameters to key�le
set set par value assigment (deprecated)
task task taskname set new default taskname
unalias unalias al1 al2 unset aliases
unset unset var1 var2 unset variables (blank them)
version version current version of miriad and capabilities
view view [taskname] edit task parameters in a key�le

% miriad -d ~/def

B.4. MIRIAD 105

Table B.2: Miriad shell command line switches
Switch Environment Variable Comments

-f lastexit_�le - global keyword �le [lastexit]
-b mirbin_dir MIRBIN executables
-d mirdef_dir MIRDEF default �les
-p mirpdoc_dir MIRPDOC documentation �les
-g turn debugging on

PAGER pager for reading documents [more]
MIRPAGER document pre-formatter [doc]

? help

106 APPENDIX B. USER INTERFACE

Appendix C

Shell Scripts

Shell scripts can make life a lot easier. If you have never written them, and
have to do a lot of repetitive work, this appendix is for you. It will give you a
small tour through creating and using them, but for a more complete coverage
proper literature is recommended.1 In the second part of this appendix we will
introduce you to an advanced usage of shell script, to make them look more like
real NEMO programs with a �keyword=value� type interface.

C.1 C Shell Scripts

A shell script is a plain ASCII text �le and can hence be created with any text
editor. It is a list of commands which you would normally have issued yourself
on the commandline (quite similar in concept to command �les under VMS
or batch �les under MSDOS). In addition, most shells have the capability of
command �ow logic (goto, if/then/else/endif etc.) retrieving the command
line parameters, de�ning and using (shell) variables etc.

Under the Unix environment one can also choose which shell to use, although we
shall only give examples in the most commonly used shell, the C-shell (csh). As
an example, we will show a shell script which copies all �les from one directory
to a new one, also creating that new directory. The new directory must not
exist yet, otherwise the script will fail with an error message. It's usage would
look like:

% csh -f scriptname dir1 dir2

1recommended: Anderson and Anderson, The Unix C Shell Field Guide. (Prentice
Hall,1986)

107

108 APPENDIX C. SHELL SCRIPTS

or shorter:

% scriptname dir1 dir2

The second form, in which the script is not told through which shell it should
process its commands, is the recommended practice. The �rst line of this script
�le must then contain the line

#! /bin/csh -f

to denote the script is to be run via the C-shell, which on standard Unix systems
is located in /bin/csh. In this case the script needs to be made executable, i.e.

% chmod +x scriptname

In e�ect your operating system will then issue the �rst form of the command,
The second form has the advantage that you don't have to remember which
shell to use, and in the end saves a few keystrokes, always considered a big issue
in Unix!

Now lets look at the full text of the script �rst:

#! /bin/csh -f

#

Example of a shell script to copy all files from one directory

to another. The input directory must not contain any subdirectories,

and it will not copy any so-called (hidden) dot-files.

#

check if called properly

if ($#argv != 2) then

echo "Usage: $0 dir1 dir2"

echo "copies all files from one directory to another"

goto done

endif

save command line args in variables

set dir1=$1

set dir2=$2

check if dir1 indeed is an existing dir

if (! -d $dir1) then

echo "$dir1 is not a directory" ; exit 1

endif

check if dir2 does not exist

if (-e $dir2) then

echo "$dir2 already exists" ; exit 1

endif

create new dir2

mkdir $dir2

if ($status != 0) goto error

loop through all files in dir1

foreach file ($dir1/*)

if (-d $file) then

C.1. C SHELL SCRIPTS 109

echo "Skipping $file (is a directory)"

else

echo "Copying $file"

cp $file $dir2

endif

end

Labels to jump to exit OK (done) or not OK (error)

done:

exit 0

error:

exit 1

A few things can be noted:

• Comments are lines that start with a #, but the �rst line of the script
must contain this strange construction "#! /bin/csh"2 to tell it how
to execute itself. By default, if the �rst line would not contain such a
directive, the script would be executed by the (more primitive) Bourne
shell (/bin/sh). Any options that would normally be supplied to the
shell must then be given in the �rst-line shell directive, as with the -f

option in the example above.

• Shell variables can be created using the set name=value construct; they
are henceforth referenced by prepending the shell variable name with a
dollar: echo $name would simply display the value of the name shell
variable (echo is a UNIX command).

• Command line arguments are in special shell variables 0, 1, 2 etc. $0

is the name of the script, $1 the �rst argument (if present), etc. All
command line arguments $1, $2,.. are also pre-de�ned in an shell
variable argv, which is actually a list (like an array). It can be referenced
as $argv[1], $argv[2], ... etc. This form has the advantage that
the construct $#argv (the same as $*) can be used to �nd the number
of elements in the list. In our example we want exactly two, hence the
�rst check. A shell variable list can be initialized using brackets, e.g.:
set name=(val1 val2 val3). In this case $#name is 3, $name[2] has
the value val2 etc.

• The if (test) then/else/endif is used to test a condition and control
command �ow. The ! is used to negate a condition, and multiple condi-
tions can be used together in the or (!!) and and (&&) boolean operators.
The -e tests if the next argument is a �le or directory that exists, and the
-d if the next argument is a directory.

• The foreach name (list) construct takes all elements from the list

that follows, and executes all commands until a matching end is encoun-
tered. Inside the loop the current shell variable is de�ned in name.

2Some older versions of UNIX do not understand this technique

110 APPENDIX C. SHELL SCRIPTS

• Labels are de�ned by a name, followed by a colon, label: jumping to a
label is be done by using goto label.

• Scripts should by terminated properly by an exit command, optionally
returning an error code (0=no error) to the caller. This gives the caller
the opportunity to catch faulty behavior. After each command the status
shell variable contains the exit value ($status) of that command.

• After each shell command the special shell variable status contains the
exit status of the previous command. We have used it once to check of the
mkdir command completed successfully, if not, a direct exit by jumping
to the label error was provided for.

More examples of shell scripts in NEMO can be found in the directory $NEMO/csh
(public scripts) and for the more adventurous in $NEMO/src/scripts (mainte-
nance scripts).

C.2 Parseargs C-shell scripts

Writing user friendly shell scripts often requires a fair amount of administrative
work, especially if the number of variables to the script is variable.

If the public domain program parseargs is available, that approach may used.
Shell scripts created with this option have the syntax (using the example plummer.csh
C-shell script below):

% plummer.csh [-n <nbody>] [-s <seed>] <file>

in the short notation3 using single character options, or in the longer form:

% plummer.csh [+nbody=<nbody>] [+seed=seed>] <file>

In this longer form the di�erence between the normal NEMO user interface
is that keywords have to be preceded with a + symbol, plus it is possible to
create scripts with �parameters� without an associated keyword. Perhaps this
last option should not be used (this example uses it in the <file> �lename
parameter) in order to keep in pace with core NEMO programs.

3like the UNIX command-line syntax

C.2. PARSEARGS C-SHELL SCRIPTS 111

Example script plummer.csh:

#!/bin/csh -f

#

Example C-shell script, using parseargs, to create an Nbody Plummer model

#

set NAME="`basename $0`"

setenv ARGUMENTS "\

'?', ARGHIDDEN, argUsage, NULL, 'Help {print usage and exit}', \

'n', ARGOPT, argInt, nbody, 'Nbody {# bodies in disk}', \

's', ARGOPT, argInt, seed, 'Seed {Random number seed}', \

' ', ARGREQ, argStr, file, 'File {Output Filename}', \

' ', ARGLIST, argStr, argv, 'argv {any remaining arguments}', \

ENDOFARGS \

"

set defaults

set nbody='1000' ## default number of bodies in disk

set seed='0' ## default inityial seed

set other=() ## remaining parameter (ignored in here)

parse command-line

parseargs -s csh -e ARGUMENTS -u -- "$NAME" $argv:q >/tmp/tmp$$

if ($status != 0) then ## improper syntax (or just wanted usage)

rm -f /tmp/tmp$$

exit 2

endif

evaluate output from parseargs & remove temporary file

source /tmp/tmp$$

rm -f /tmp/tmp$$

echo arguments

echo "ARGUMENTS:"

echo "=========="

echo file=$file:q

echo nbody=$nbody:q

echo seed=$seed:q

if ($#argv > 0) echo Additional Positional Parameters=$argv:q

get down to the work

#

echo " ### Making initial conditions"

mkplummer out=$file nbody=$nbody seed=$seed

112 APPENDIX C. SHELL SCRIPTS

Appendix D

Directory Structure

In this Appendix we show the directory tree structure as you should �nd it under
NEMO. Directory names preceded with a (*) are being fully exported by the
export procedures. The �src� tree contains all of the o�cial source code, and is
expanded a bit on following pages. The �usr� (or �contrib�) tree is what used
to be the $NEMO/src tree in the �rst releases of NEMO (Version 1.x). Some
of the code in $NEMO/usr is now outdated, and superseded by more recent
versions somewhere in $NEMO/src tree. Any 'personal' (most public domain
also) code should now be placed in the appropriate $NEMO/usr tree before it can
be accepted (moved over) into the $NEMO/src tree. We advice programmers to
stick as closely as possible to the install procedures in the $NEMO/src tree, if at
all possible. See the Make�les and the discussion on these in the Programmers
Guide (see 6.3.2).

113

114 APPENDIX D. DIRECTORY STRUCTURE

adm/ local administrativia

export/ - exported tar files

import/ - imported tar files from other sites

bin/ executables ($NEMOBIN)

* bugs/ ... the known ones (optional)

* csh/ example shell scripts

* data/ NEMO data files

* demo/ ... demo scripts

etc/ various /etc type files

* inc/ standard include dir for NEMO

fortran/ -- fortran I/O routines

multicode/ -- josh' multicode

snapshot/ -- snapshot

lib/ object libraries ($NEMOLIB)

local/ things local to your site

* man/ manual pages

man1/ -- programs

man3/ -- library routines

man5/ -- file structure

man8/ -- miscellaneous/maintenance

doc/ -- inline .doc for miriad/nemotool

* news/ news on new/modified software

obj/ dynamic object loader files ($NEMOOBJ)

bodytrans/

potential/

* src/ The whole source tree: (see also next page)

kernel/ Basic general stuff (i/o, utils)

nbody/ Nbody (snapshot)

image/ Images

orbit/ Orbit calulations, potentials

tools/ Various borrowed tools

scripts/ Various (maintenance) scripts

tutorial/ Tutorial material - toy programs

... ==See next page for expanded view==

(*)usr/ Public donation programs (old NEMO/src)

josh/

pjt/

piet/

...

* text/ alternate doc, mostly (la)tex stuff

manuals/ latex documents (e.g. this manual)

tmp/ temporary storage

Table D.1: Overview of the $NEMO/ tree

115

* src/ THE SOURCE TREE

kernel/ All of these needed for full NEMO implementation

cores/ independent but otherwise essential utilities for IO

io/ getparam & filestruct (user interface, database i/o)

misc/ miscellaneous library utilities

yapp/ YAPP plotting device drivers

loadobj/ Dynamic object loader

tab/ Table manipulation stuff

fortran/ Fortran to C interface

nbody/ Nbody

cores/ essential utilities for Nbody

io/ I/O get_snap etc.

init/ create models

evolve/ Evolve (integrate) models

hackcode/ Treecode

export/ --export version - no bells and whistles

source1/ Barnes and Hut (official c version)

treecode/ Lars Hernquist fortran version of treecode

multicode/ Simon White`s multipole expansion (Barnes version)

aarseth/ Sverre Aarseth

nbody0/

nbody1/

potcode/ Non-selfconsistent particle integrator

silly/ Silly demo version of N^2 code

trans/ Transformation utilities for snapshots

reduc/ Analysis utilities

image/ 2- and 3D image analysis

cores/

io/

fits/

misc/

orbit/ Orbit analysis

io/

cores/

potential/ Potentials

data/ repository of potential source code files

tools/ Tools, independent and mostly (PD) borroware

movie/ movie for sun raster files (PD)

movietool/ movietool for sun raster files (PD)

ds/ image display program (Sebok)

tutor/ Example programs and Makefile to toy with

Table D.2: Some pieces of the $NEMO/src/ tree (this branch is o�cially ex-
ported)

116 APPENDIX D. DIRECTORY STRUCTURE

(*)usr/ User contributed software tree

aarseth/ --Sverre Aarseth

josh/ --Josh Barnes

clib/

hackcode/

export/

source1/

multicode/

nbody/

bodytrans/

snapshot/

tools/

lars/ --Lars Hernquist

treecode/

makino/ --Jun Makino

nbody/

mbellon/ --Mark Bellon

gravsim/

nemo/ --NEMO

demo/

maint/

news/

util/

shar/

f2c/

yapp/

piet/ --Piet Hut

clib/

newton/

pjt/ --Peter Teuben

clib/

image/

nbody/

orbit/

pswisnov/ --Peter Wisnovksi

ccddisplay/

snapsmooth/

unemo/ -- Micro Nemo (old version)

lib/

nbody/

Table D.3: Some pieces of the $NEMO/usr/ tree (this branch is o�cially not
exported)

Appendix E

Benchmarks

In this section we'll discuss some of the benchmarks. How fast does the N-body
treecode run? To what degree does optimization/vectorizing help? When do
programs become I/O dominated? Some of the numbers quoted below should
be taken with great care, since a lot of other factors can go into the timing
result. A number of programs in NEMO have a command line parameter such

as nmodel=N or nbench=N that is normally set to 1, but together with help=c

will give an accurate measurement how long the code takes to execute N loops
of a particular algorithm.

E.1 N-body integration

E.1.1 Treecode

The standard NEMO benchmark of the treecode integration is to run hackcode1
without any parameters. It will generate a spherical stellar system in virial equi-
librium with 128 particles, and integrate it for 64 timesteps (tol=1 eps=0.05).
In Table E.1 the amount of CPU (in seconds) needed for one timestep is listed
in column 2. When not otherwise mentioned, the code used is the standard
NEMO hackcode1 with default compilation on the machine quoted. Note that
one can often obtain signi�cant performance increase (factor of 2 on some sparc
architectures) by studying the native compiler and in particular its optimization
options.

The gravsim code1 is better suited for a multiprocessor machine. Its user
interface and database format are however di�erent from NEMO's and interface

1C version code of the treecode written by Mark Bellon - Urbana, IL

117

118 APPENDIX E. BENCHMARKS

Table E.1: Treecode Benchmarks

Machine cpu-sec/step code comments

Dec-alpha 0.0042 hackcode1 -O4 -fast
Dec-alpha 0.0048 hackcode1 default
CRAY X/YMP48 0.0060 TREECODE V3 estimate (1989)
Onyx-2 0.0088 hackcode1 default (1996)
ETA-10 0.010 TREECODE V2 estimate (1987)
Sun Ultra-140 0.012 hackcode1 -xO4 -xcg92 -dalign -xlibmil
Sun 20/62 0.013 hackcode1 default (1994)
Cyber 205 0.018 TREECODE V2 estimate (1986)
Sun 20/61 0.020 hackcode1
HP/UX 700 0.020 hackcode1
Sun Ultra-140 0.024 hackcode1 default
Sun 20/?? 0.024 hackcode1 -xO4 -xcg92 -dalign -xlibmil
G3 PowerPC 250Mhz 0.026 hackcode1 -O
Sun 10/51 0.029 hackcode1 -O -fast -fsingle
Cray-2 0.029 TREECODE2 REAL - Pitt, oct 91
DEC DS3000/400 alpha 0.036 hackcode1 default compilation
Pentium-100 0.038 hackcode1 default
SGI Indigo 0.045 hackcode1 default compilation
CRAY YMP 0.059 hackcode1 default compilation
Sparc-10 0.063 hackcode1 using acc -cg92

486DX4-100 (linux) 0.068 hackcode1 default
486DX2-66 (linux) 0.093 hackcode1 -DSINGLEPREC
Sparc-2 0.099 gravsim V1
IBM R/6000 0.109 hackcode1 default cc compiler
Dec 5000/200 0.116 hackcode1
Sparc-2 0.130 hackcode1 -DSINGLEPREC -fsingle
Sparc-2 0.180 hackcode1
Multi�ow 14/300 0.190 hackcode1
Convex C220 0.290
NeXT 0.240 [ganymede 68040, nov 91]
Sparcstation1+ 0.340
Sun-4/60 Sparcstation 1 0.420
Alliant FX?? 0.430 gravsim V1
Alliant FX4/w 3 proc's 0.590
VAX workstation 3500 0.970
Sun-4/60 Sparcstation 1 1.040 treecode2 cf. C-code @ 0.420
Sun-3/110 1.660 hackcode1 fpa.il
Sun-3/60 2.280
Sun-3/60 5.400 -fswitch
3b1 (10Mhz 68010) 49.000
386SX (16Mhz) 87.000 (linux) software �oating point

E.1. N-BODY INTEGRATION 119

Table E.2: N-Body0 Benchmarks

machine(name) time1 (sec) time2 (sec) speed

Sun-4/110(Pele - 8Mb) 21,753 0.41
Vaxstation 3100(Mi�y - M48, 24Meg) 1302 0.65
Sparc 1 1023 0.83
Sparc IPC(Courage - 16 Mb) 9,015 850 1.000
Sparc 2 4,483 2.01
Sparc 2' 417 2.04
Dec 5000/200 318 2.67
Stardent(ism) 211 4.03
IBM Risc (Juno) 2,117 198 4.27
IBM Risc (wibm01) 2,115 4.26
Convex 172 4.94
HP/UX 700 26.2
Cray YMP 19.1 44.5

scripts can be de�ned which make working with this code a little easier. Both
these C versions of the treecode (hackcode1 and gravsim) are inherently slower
because they are recursive and spend most of their CPU time in treewalking
(with a lot of integer arithmetic). The modi�ed (vectorized) Hernquist fortran
code (referred to as TREECODE V3) has an approximate speedup of about a factor
200-400 over the original VAX/Sun-3 speed on a CRAY supercomputer.

It is also perhaps interesting to quote that replacing the sqrt function by a
very fast machine dependant one will increase the speed of the C version of the
treecode by about 20%. Some recent HP computers have a special hardware
�oating point operation to perform 1/sqrt().

E.1.2 Nbody0

The program is Aarseth's simplest nbody code (contained in Binney and Tremaine,
1987, no regularization or nearest neighbors). The input is a Hubble expand-
ing cartesian lattice, w/ 925 pts, GMtot=1, expansion factor = 6 (omega =
1.2). Long version followed for 60 time units, short version for 5. Results are
summarized in Table E.22

2Table E.2 compiled by D. Richstone

120 APPENDIX E. BENCHMARKS

E.2 Orbit integration

Benchmark is taking 100,000 leapfrog steps. For 2D optimized potentials3 the
timing on a Sparc-1 station is about 12" for log or plummer, and 23" for
teusan85 in the core region (orbit remaining within the body of the bar).

more coming

3Compiled with -DTWODIM

Appendix F

Potentials

This Appendix lists a number of potentials 1 that are currently available in
NEMO. Most NEMO programs that deal with potentials have three program
keywords associated with potentials: potname=, potpars= and pot�le=,
describing their name, optional parameters and optional associates �lename (or
other textual information). Each section below details a potential and explains
the usage of the potpars= and pot�le= keywords. The section title is the
actual potname= to be used for this potential. Mostly G = 1, unless otherwise
mentioned.

A word of caution: potentials are being re-designed into a more general concept
of accelerations, although with the intent to keep them backwards compatible.

F.1 bar83

potname=bar83 potpars=Ω, fm, fx, c
a

Barred potential as described by Teuben and Sanders (1983), see also teusan83.

Note: the potential only valid in the z=0 plane!

F.2 bulge1

potname=bulge1 potpars=Ω,M,R, c/a

homogeneous oblate bulge with mass M , radius R, and axis ratio c/a

1Automatically generated from CTEX comments in the $NEMO/src/orbit/potential/data
source code

121

122 APPENDIX F. POTENTIALS

F.3 ccd

potname=ccd potpars=Ω, Iscale, Xcen, Y cen, Dx,Dy pot�le=image(5NEMO)

This potential is de�ned using a simple cartesian grid on which the potential
values are stored. Using bilinear interpolation the values and derivatives are
computed at any point inside the grid. Outside the grid (as de�ned by the
WCS in the header) the potential is not de�ned and assumed 0. The lower left
pixel of an image in NEMO is de�ned as (0,0), with WCS values Xmin,Ymin
derived from the header. If the (Xcen,Ycen) parameters are used, these are the
0-based pixel coordinates of the center pixel. If (Dx,Dy) are used, these are
the pixel separations. To aid astronomical images where Dx < 0, these are
interpreted as positive. Also note that potentials are generally negative, so it is
not uncommon to need Iscale = −1. Programs such as potccd can create such
a ccd grid potential from a regular potential.

Note: Since these forces are de�ned only in the Z=0 plane, the Z-forces are
always returned as 0.

F.4 cp80

potname=cp80 potpars=Ω, ε

Contopoulos & Papayannopoulos (1980, A&A, 92,33) used this potential in the
study of orbits in barred galaxies. Note that their �bar� is oriented along the
Y-axis, an axis ratio is not well de�ned, and for larger values of ε the density can
be negative. The potential used is given by adding an axisymmetric component
to a m=2 fourier component:

Φ = Φ1 + Φ2

where Φ1 is the Isochrone potential with unit scalelength and mass, and Φ2 the
Barbanis & Woltjer (1965) potential:

Φ1 = − 1
(1 +

√
1 + r2)

and

Φ2 = εr(16 − r)cos(2φ)

A value of ε = 0.00001 is the default for a moderate bar, whereas 0.001 is a
strong bar!

F.5. DEHNEN 123

F.5 dehnen

potname=dehnen potpars=Ω,M, a, γ

Walter Dehnen (1993, MN 265, 250-256) introduced a family of potential-
density pairs for spherical systems:

The potential is given by:

Φ =
GM

a

1
2 − γ

[
1 −

(
r

r + a

)2−γ
]

cumulative mass by

M(r) = M
r

(r + a)3−γ

and density by

ρ =
(3 − γ)M

4π

a

rγ(r + a)4−γ

with 0 <= γ < 3. Special cases are the Hernquist potential (γ = 1), and the
Ja�e model (γ = 2). The model with γ = 3/2 seems to give the best comparison
withe de Vaucouleurs R1/4 law.

See also Tremaine et al. (1994, AJ, 107, 634) in which they describe the same
density models with η = 3 − γ and call them η-models.

F.6 dublinz

potname=dublinz potpars=Ω, r0, r1, v1, dvdr, s, h

Forces de�ned by a double linear rotation curve de�ned by (r1, v1) and a gradient
dvdr between r0 and r1. As in �atz (from which this one is derived), the
potential is quasi harmonic in Z (linear forces), with radial scalelength h and
scale height s

F.7 expdisk

potname=expdisk potpars=Ω,M, a

Exponential disk (BT, pp.77)

Φ = −M

rd
x [I0(x)K1(x) − I1(x)K0(x)]

124 APPENDIX F. POTENTIALS

F.8 �atz

potname=�atz potpars=Ω, r0, v0, s, h

forces de�ned by a rotation curve that is linear to (r0, v0) and �at thereafter
and quasi harmonic in Z, with radial scalelength h and scale height s. See also
dublinz for a variation on this theme.

F.9 halo

potname=halo potpars=Ω, v0, rc

F.10 grow_plum

F.11 grow_plum2

F.12 harmonic

potname=harmonic potpars=Ω, ω2
x, ω2

z , ω2
z

Harmonic potential

Φ =
1
2
ω2

xx2 +
1
2
ω2

yy2 +
1
2
ω2

zz2

F.13 hernquist

potname=hernquist potpars=Ω,M, rc

The Hernquist potential (ApJ, 356, pp.359, 1990) is a special γ = 1 case of the
Dehnen potential. The potential is given by:

Φ = − M

(rc + r)

and mass

M(r) = M
r2

(r + rc)
2

and density

ρ =
M

2π

rc

r

1
(r + rc)

3

F.14. HOM 125

F.14 hom

potname=hom potpars=Ω,M,R, τ

F.15 hubble

potname=hubble potpars=Ω,M,R, b, c where M and R are the core mass
and radius. b and c are, if given, the intermediate and short axes can be di�erent
from the core radius.

The Hubble pro�le (BT, pp 39, req. 2-37 and 2-41) has a density law:

ρ = ρh(1 + (r/rh)2)−3/2

and an equally simple expression for the projected surface brightness:

Σ = 2ρhrh(1 + (r/rh)2)−1

The derivation of the potential is a bit more involved, since there is no direct
inversion, and integration in parts is needed. The cumulative mass is given by:

Mh(r) = 4πr3
hρh{ln[(r/rh) +

√
1 + (r/rh)2] − r/a√

1 + (r/rh)2
}

and the potential

Φ(r) = −GMh(r)
r

− 4πGρhr2
h√

1 + r

F.16 kuzmindisk

potname=kuzmin potpars=Ω,M, a

Kuzmin (1956) found a closed expression for the potential of an in�nitesimally
thin disk with a Plummer potential in the plane of the disk (see also BT pp43,
eq. 2-49a and 2-49b):

Φ = − GM√
r2 + (a + |z|)2

and corresponding surface brightness (check units)

Σ =
aM

2π(a2 + r2)−3/2

With GMa2 = V 2
0 . This potential is also known as a Toomre n=1 disk, since it

was re-derived by Toomre (1963) as part of a series of disks with index n, where
this disk has n = 1.

126 APPENDIX F. POTENTIALS

F.17 isochrone

potname=isochrone potpars=Ω,M, R

F.18 ja�e

potname=ja�e potpars=Ω,M, rc

The Ja�e potential (BT, pp.237, see also MNRAS 202, 995 (1983))), is another
special γ = 2 case of the Dehnen potential.

Φ = −M

rc
ln

(
r

rc + r

)

F.19 log

potname=log potpars=Ω,Mc, rc, q

The Logarithmic Potential (BT, pp.45, eq. 2.54 and eq. 3.77) has been often
used in orbit calculations because of its �at rotation curve. The potential is
given by

Φ =
1
2
v2
0 ln

(
r2
c + r2

)
with Mc ≡ 1

2rcv
2
0 de�ned as the �core mass�.

F.20 mestel

potname=mestel potpars=Ω,M,R

F.21 miyamoto

potname=miyamoto potpars=Ω, a, b,M

Φ = −M

....

F.22. NFW 127

F.22 nfw

The NFW (Navarro,Frank & White) density is given by

ρ =
M0

r(r + a)2

and the potential by

Φ = −4πM0
ln (1 + r/a)

r

F.23 null

This potential has no other meaning other than to fool the compiler. It has
no associates potential, thus the usual potname, potpars,pot�le will have no
meaning. Use potname=zero if you want a real potential with zero values.

F.24 op73

potname=op73 potpars=Ω,MH , rc, rh

Ostriker-Peebles 1973 potential (1973, ApJ 186, 467). Their potential is given
in the form of the radial force law in the disk plane:

F =
M

R2
h

(Rh + Rc)
2

(r + Rc)
2

r

Rh

F.25 plummer

potname=plummer potpars=Ω,M,R

Plummer potential (BT, pp.42, eq. 2.47, see also MNRAS 71, 460 (1911))

Φ = − M

(r2
c + r2)1/2

128 APPENDIX F. POTENTIALS

F.26 plummer2

F.27 rh84

potname=rh84 potpars=Ω, B, a, A, r0, i0, j

This 2D spiral and bar potential was used by Robert and collaborators in the
70s and 80s. For counterclockwise streaming, this spiral is a trailing spiral
when the pitch angle (i0) is positive. Within a radius r0 the potential becomes
barlike, with the bar along the X axis. At large radii the spiral is logarithmic.
References:

Roberts & Haussman (1984: ApJ 277, 744)

Roberts, Huntley & v.Albada (1979: ApJ 233, 67)

F.28 rotcur0

potname=rotcur0 potpars=Ω, r0, v0

The forces returned are the axisymmetric forces as de�ned by a linear-�at rota-
tion curve as de�ned by the turnover point r0, v0. The potential is not computed,
instead the interpolated rotation curve is returned in as the potential value.

F.29 rotcur

potname=rotcur potpars=Ω pot�le=table(5NEMO)

The forces returned are the axisymmetric forces as de�ned by a rotation curve
as de�ned by a table given from an ascii table. The potential is not computed,
instead the interpolated rotation curve is returned in as the potential value.

This version can only compute one version; i.e. on re-entry of inipotential(), old
versions are lost.

F.30 teusan85

potname=teusan85

This potential is that of a barred galaxy model as described in Teuben & Sanders
(1985) This bar is oriented along the X axis. This is the 2D version for forces.

F.31. TRIAX 129

This version should give (near) identical results to bar83 and very simlar to
athan92.

F.31 triax

potname=triax

A growing bi/triaxial potential

F.32 two�xed

potname=two�xed potpars=Ω,M1, x1, y1, z1,M2, x2, y2, z2

This potential is de�ned by two �xed points, with di�erent masses and positions.
Orbits in this potential exhibit a number of interesting properties. One well
known limit is the stark problem, where one of the two bodies is far from the
other and near-circular orbits near the central particles are studied. Another
is the limit or two particles near to other and orbits that circumscribe both
particles.

F.33 plummer4

potname=plummer potpars=Ω,M,R

Plummer potential (BT, pp.42, eq. 2.47, see also MNRAS 71, 460 (1911))

Φ = − M

(r2
c + r2)1/2

F.34 vertdisk

F.35 tidaldisk

Tidal �eld exerted by a (plane-parallel) stellar disk on a cluster passing through
with constant vertical velocity. Useful for simulations of disk-shocking of, say,
globular clusters

The following three density models are available

1. thin disk:

130 APPENDIX F. POTENTIALS

ρ(z) = Σ ∗ δ(z)

2. exponential disk:

ρ(z) =
Σ
2h

exp
−|z|
h

3. sech2 disk:

ρ(z) =
Σ
4h

sech2 z

2h

Parameters (to be given by potpars=...) are:

par[0] = not used (reserved for pattern speed in NEMO)

par[1] = h scale-height par[1] = 0 -> thin disk

par[1] > 0 -> vertically exponential disk

par[1] < 0 -> sech2 disk with h=|par[1]|

par[2] = Sig disk surface density

par[3] = Vz constant vertical velocity of cluster center

par[4] = Z0 cluster center z-position at t=0

par[5] = add boolean: add tidal potential or not?

We always assume G=1.

If you want to include the acceleration of the disk on the cluster as a whole,
rather than assume a constant velocity, use vertdisk.c

Some words on the mechanics

Assume that the plane-parallel disk potential and force are given by

Φ(Z)andF (Z) = −Φ′(Z).

Then, the tidal force exerted on a star at position z w.r.t. to cluster center,
which in turn is at absolute height Zc = Z0 + t Vz, is simply

Ft(z) = F (Zc + z) − F (Zc).

Integrating this from z=0 to z gives the associated tidal potential as

Φt(z) = Φ(Zc + z) − Φ(Zc) + z ∗ F (Zc).

Whenever the tidal force & potential are desired at a new time t, we pre-compute
Zc and the plane-parallel potential and force at Z = Zc. Note that when both
Zc and Zc + z are outside of the mass of the disk (and Z = 0 is not between
them), both tidal force and potential vanish identically. The standard treatment
of tidal forces corresponds to approximating (2) by F (Zc) + z ∗ F ′(Zc). This
method, however, breaks down for disks that are thin compared to the cluster,
while our method is always valid, even for a razor thin disk.

F.36. POLYNOMIAL 131

F.36 polynomial

potname=polynomial potpars=Ω, a0, a1, a2, a3,

Polynomial potential

Φ = a0 + a1r + a2r
2 +aNrN

where any unused coe�cients will be set to 0. Up to 16 (de�ned as MAXPOW)
can be used.

F.37 wada94

potname=wada94 potpars=Ω, c, a, ε

Wada (1994, PASJ 46, 165) and also Wada & Have (1992, MN 258, 82) used
this potential in the study of gaseous orbits in barred galaxies.

Φ = Φ0 + Φb

where Φ1 is the Toomre potential with scalelength a

Φ0 = − 1√
R2 + a2

and

Φb = −ε
aR2

(R2 + a2)2

A relationship for the axisymmetric component is

−
√

(27/4)

F.38 zero

potname=zero

Zero potential

Φ = 0

132 APPENDIX F. POTENTIALS

Appendix G

Units and Coordinate
Systems

G.1 Coordinate Systems

Astronomy is well known for its confusing coordinate systems: nature and math
don't always look at things through the same mirror. For example, the so-
common (mathematical) right handed coordinate system that we call X-Y-Z
does not neatly �t in with our own Galaxy, which rotates counter-clockwise
(meaning the angular moment vector points to the galactic south pole). Sky
coordinates (e.g. Right-ascension Declination) are is pinned on the sky, looking
up, instead of on a sphere, looking down, and become a left-handed coordinate
system where the "X" coordinate increases to the left.

Here are some examples, and their respective NEMO programs that deal with
this. See also their manual pages for more detailed information.

• mkgalorbit: orbits in our galaxy have to deal with the UVW space veloc-
ities in the galactic coordinate system. There is no formal de�nition of a
spatial XYZ system, other than Z=0 being the galactic plane. So, where
to put the sun if the galactic center is (0,0,0) is purely by convention. It so
happens that (-R0,0,0) is convenient since galactic longitude and latitude

can be easily expressed as atan2(y, x) and atan2(z,
√

x2 + y2) resp.

• mkspiral, mkdisk: These programs use the sign= keyword to set the
sign of the angular moment vector. Positive means thus counter-clockwise
rotation in this convention. Of course with tools like snapscale and
snaprotate snapshots can always be re-arranged to �t any schema.

• snaprotate: in order for a known object (e.g. a disk) to be viewed as an

133

134 APPENDIX G. UNITS AND COORDINATE SYSTEMS

ellipse with given position angle and ellipticity this program uses a series of
Eulerian angle rotations. Apart from the astronomical convention to using
position angle as a counter clockwise angle measured from north, these
numbers do no trivially convert to the angles we use on the projected sky.
There are some examples in the manual page, which we brie�y highlight
here.

1. The �rst example describes the projection of disks of spiral galaxies.
If kinematic information is also known, the convention is to use the
position angle of the receding side of the galaxy. The inclination still
has an ambiguity, which could be used to di�erentiate based on which
is the near and far side, but this would result in values outside the
commonly used 0..90 range. Thus the sense of rotation (sign of the
angular momentum) is a more natural way, with again sign=-1 for
counter-clockwise rotating (as seen for us projected on the sky)

Figure G.1: Example galaxy disks: clockwise (M33, left) and counter-clockwise
(M51, right), assuming trailing spiral arms

Here are NEMO commands to create an example velocity �elds of
these two galaxies with the right orientation and velocity �eld (with
an arbitrary rotation curve of course):

mkdisk - 1000 sign=+1 mass=1 |\ # clock wise rotating

snaprotate - - theta=-30,-160 order=yz |\

snapgrid - vel-m33.ccd moment=-1

mkdisk - 1000 sign=-1 mass=1 |\ # counter clock wise rotating

snaprotate - - theta=+22,170 order=yz |\

snapgrid - vel-m51.ccd moment=-1

2. The second example is that of a barred galaxy, or two nested disks if
you wish. Here an addition angle, the di�erence between the major
axis and that of the bar), is a parameter.

• snapgalview

• ccdfits

G.2 Units

Appendix H

GNU Scienti�c Library

This Appendix describes some of the enhanced features if NEMO was compiled
with the GNU Scienti�c Library (GSL)1.

H.1 Installation

During NEMO installation GSL should have been automatically detected if
present in one of a few common location (e.g. /usr/local/include/gsl),
though the con�gure �ag �with-gsl-prefix= can also be used to force a dif-
ferent location. Equally so, using �disable-gsl can be used to avoid setting
NEMO up to use GSL. If not, and you install GSL in a speci�c location, you will
have to edit $NEMOLIB/makedefs and possible $NEMOLIB/config.h, or re-install
NEMO with the correct �ags or hope auto-detection will work. To remind, in-

stallation of GSL can be done in two ways:

1. end user: tar

tar zxf gsl-1.4.tar.gz

cd gsl-1.4

./configure --with-prefix=$NEMO/opt

make

make install

2. developer (or even maintainer):

cvs -d :pserver:anoncvs@sources.redhat.com:/cvs/gsl checkout gsl

1http://sources.redhat.com/gsl/

135

136 APPENDIX H. GNU SCIENTIFIC LIBRARY

./autogen.sh

./configure --enable-maintainer-mode

make

H.2 Features

The following components in NEMO make use of GSL:

1. xrandom: the random number generator can use any of the many genera-
tor types that GSL supports. In classic NEMO we use the portable (but
slightly modi�ed) ran3 routine from Numerical Recipes, using the stan-
dard seed= but with GSL enabled, this keyword can now be used with an
optional random number generator type, viz. seed=seed-number,generator-
type, e.g. seed=0,ran3. The default for GSL is their mt19937 generator,
though good old ran3 is also available. The NEMO program xrandom

will help with testing and selecting a good generator. The xrandom pro-

gram will also display two new keywords: gsl= and pars= with which
di�erent distributions can be generated. This duplicates some of the
gsl-randist.c program in the GSL distribution itself.

2. spline:

3. �tting: This is under development

4. histogram: There is gsl-histogram.c, but this is not used yet in NEMO.

H.3 Future

Appendix I

Installation, updates and
exporting

This Appendix describes installation and maintenance of NEMO. NEMO cur-
rently consists of about 35MB of source, documentation, data�les etc. obtained
either as a compressed tar �le (around 6MB) or, preferably actually, via CVS.
In NEMO V3 the installation has been simpli�ed using autoconf, and users are
encouraged to use CVS to install and update their version of NEMO.

The �rst Section I.3 walks you through an installation using the new con�gure
script. For the most it is likely to be close to the procedure on any standard
UNIX system, although a number of known deviations are described in Section
I.4. Exporting a working NEMO system is described in Section I.5. Incremental
updates (import as well as export) are described in Section I.6. Finally, various
maintenance issues are discussed in Section I.7.

The installation examples shown below assume you are using something like the
csh shell; you would likely have to replace commands such as setenv, source,
rehash, set etc. by the appropriate ones for another shell. We mereley leave
this as an excersize for the reader (:-).

I.1 CVS - NEMO V3.2

Most of this is now described in more detail in the �le README.install, but
brie�y here are the steps of a typical current NEMO install, using PGPLOT, in
csh (there still is no proper sh support):

setenv CVSROOT :pserver:anonymous@cvs.astro.umd.edu:/home/cvsroot

cvs login (a one-time only RETURN)

137

138 APPENDIX I. INSTALLATION, UPDATES AND EXPORTING

cvs -Q co nemo

cd nemo

(mkdir local; cd local; cvs -Q co pgplot)

./configure --with-yapp=pgplot --with-pgplot-prefix=`pwd`/lib

source nemo_start

make postconfig

source NEMORC.local

make pgplot

make vogl

make libs

make bins

This process takes currently 2.5 minutes (P1.6GHz laptop, redhat 9) and pro-
duces about 190 programs and occupies about 125MB of diskspace

I.2 Bootstrap

I.3 Linux workstations - NEMO V3.0 and V3.1

We are going to install NEMO in the directory designated by the environment
variable $NEMO on a Linux workstation. The NEMO environment variable will
be needed (see also Appendix A), and will generally be set in your .cshrc �le.
We will do this a little later. Even if your are not on a Sun workstation, please
read this section carefully and the next section on installation procedures on
non-Sun UNIX systems.

If you haven't done so yet, create NEMO's root directory now (or make at least
sure that the directory is empty):

% mkdir $NEMO (or whatever $NEMO will be)

% cd $NEMO

It is perhaps convenient to install a special �nemo� user. In case your site has
active users that are donating software to NEMO (the ultimate goal of this
project) the sub-directories need to have write permission for them. The use of
UNIX 'groups' may come in handy here. To begin with, $NEMO/usr is intended
for this purpose.

We will now take you through the installation step by step1.

1Remember there is also the bootstrap method, which automates large parts of the fol-

I.3. LINUX WORKSTATIONS - NEMO V3.0 AND V3.1 139

I.3.1 tar

A tar �image� of the source code will be either on tape, or is already available2

on disk. Extract it from tape (the name of the tapedrive in this example is
/dev/rmt0):

% tar xf /dev/rmt0

or extract it from a disk tar�le (called nemo.tar here):

% tar xf nemo.tar

or:

% zcat nemo.tar.Z | tar xf -

or:

% gzip -dc nemo.tar.gz | tar xf -

or:

ftp> get nemo.tar.gz "|gzip -dc | tar xf -"

depending on the nature and location of the (compressed) tar �le. It may have
been compressed (.Z) with the standard UNIX compress(1) program, or the
GNU utility gzip. Instead of using uncompress(1), the utility zcat(1) can be
piped to tar(1) to extract the tar �le much more e�ciently. You may even
transfer the �le accross the (inter)net via the ftp3 utility and piping it's output
straight into tar to avoid having to store the tar �le on your local disk.

BE SURE to be in the $NEMO directory while doing this! On some UNIX systems
it may happen that tar complains about not being able to create directories or
such. You can probably ignore it, since SYSV tar wants to preserve ownership
(stored by a user id, which may be unknown or even invalid on your target
machine). The tar program may have a �ag for this.

If you haven't set the NEMO environment variable (cf. Appendix A) now is
really a good time to do it.

First add the following to your .cshrc �le, somewhere before the PATH envi-
ronment is de�ned:

setenv NEMO /usr/nemo (or whatever)

source $NEMO/NEMORC

After having read the NEMORC startup �le, a number of environment variables and
alias will have been added to your current environment. Include the $NEMOBIN
directory in your search path before any major system areas, e.g.:

lowing steps
2See Section I.5 how to create such tar �les from an existing NEMO installation
3not all versions of ftp allow this feature though

140 APPENDIX I. INSTALLATION, UPDATES AND EXPORTING

set path = (. $NEMOBIN $path)

and make it current:

% rehash

Now that all source and documentation is in place, the installation can start.
As said before, the top level $NEMO/Makefile can steer the whole installation
process heirarchically, calling Makefile's in lower level directories and so on and
so on.4

I.3.2 make dirs

First we need to complete the creation of the NEMO directory structure5 as
needed for this particular $NEMOHOST. Also a few �les within the system need
to have write permission by all users:

% make dirs

You will likely see comments that certain directories and �les exist, which is �ne.
This install command can be rerun without any danger when updates come in.
If you get some kind of error message like:

Badly placed ()'s.

*** Error code 1 (ignored)

it is most likely that you are within a strict SYSV-like environment, that directly
imports the SHELL variable into make, and since our make�le's are written with
the assumption that /bin/sh is the make-shell, one has to use something like:

% make dirs SHELL=/bin/sh

By copying the appropriate make.* script from $NEMO/src/scripts/ into $NEMOBIN,
this problem is generally solved.

Also a few �les are created that are needed when running NEMO. These are
summarized in Table I.1. If you expect to run the import/export scripts and
be in regular contact with the central source archive, you need to give them
your NEMOSITE name alias, and edit the NEMORC.local �le appropriately.

4At least, this is the goal of this game
5A full listing was presented in Appendix D

I.3. LINUX WORKSTATIONS - NEMO V3.0 AND V3.1 141

The YAPPLIB probably needs to be set to one of the available YAPP_*
variables from the NEMORC �le, since the default is YAPP_NULL (no graphics
output!). The sensible thing to do, is going through the installation of the
library (as discussed in Section I.3.5), after which some tests in the directory
$NEMO/src/kernel/yapp will tell you which graphics device is easiest to install
on your machine.

Table I.1: Installation created �les

File Purpose Notes
etc/motd New announcements You edit to suit your site
adm/TIMESTAMP installation do not hand touch this!
adm/Usage usage log needs chmod a+w permission
NEMORC.local import/export edit at least NEMOSITE
nemo_start easier startup not created with make

VERSION version id must be major.minor.patch numbers

I.3.3 make scripts

The next step is to copy a number of important6 scripts into $NEMOBIN:

% make scripts

Currently the NEMO environment needs a search path where the system C-
compiler is preceded by our own cc script. This script then calls the real UNIX
C-compiler (often /bin/cc). On some UNIX machines, a make script needs to
be installed too to precede the system make(1) utility. This will be discussed
later.

If you don't like the choice the installation procedure has given you, pick another
one, and copy it yourself instead, for example, to select the gnu compiler, issue:

% cd $NEMO/src/scripts

% cp cc.gnu $NEMOBIN/cc

% rehash

I.3.4 More on scripts

In the previous section only a few very essential scripts were copied to $NEMOBIN,
but the directory $NEMO/src/scripts contains a number of other useful scripts
for users, as summarized in Table I.2.

6only the cc script is installed now

142 APPENDIX I. INSTALLATION, UPDATES AND EXPORTING

Table I.2: Useful user scripts for NEMOBIN

Script Purpose Notes
bake make replacement Template in $NEMOLIB

mknemo Find and install programs
mkpdoc check if doc �le needs update Also called by mknemo
manlaser send manual pages to (laser)printer Ignores small .so �les
rmsf remove NEMO binary data �les

There are some more scripts, but they are more useful for NEMO maintenance,
as summarized in Table I.3, and should perhaps not be copied to $NEMOBIN for
direct access by users.

Table I.3: Useful maintenance scripts

Script Purpose Notes
nmlist listing of library
ranlib fake if none present needed on SYS5
tardot gather all hidden . �les see also submit

I.3.5 make install

A full installation starts with installing the essential libraries, after which ap-
plication programs can be compiled at will.

On a Sun4 workstation the default installation is invoked by:

% make -i sun4 >& make.log &

% tail -f make.log

.....

<Control-C> # to abort tail

We have added an (stdout + stderr) redirection of the screen output to a �le
here and also put the job in the background for convenience. Also, the extra -i

�ag will force the installation through possible errors. The log �le make.log is
to check for errors afterwards.

Particularly at this stage, before you compile source code, you may wish to
review if certain system dependant features compiled correctly, and patch the
system. No good facilities are available from the top level, but Makefile's in
the appropriate directories usually contain information and are �exible enough

I.3. LINUX WORKSTATIONS - NEMO V3.0 AND V3.1 143

to patch the system with a minimum amount of e�ort. A number of standard
patches are described in the next Section.

I.3.6 mknemo

The previous process only installs the necessary libraries. At this stage each
program needs to be loaded manually. The script mknemo should be installed
for this (see section I.3.4). To install the programs hackcode1, mkplummer and
snaprstat you could issue:7

% mknemo hackcode1 mkplummer snaprstat

The mknemo script is a little bit smart about certain di�erent structures of com-
piling programs, e.g. if there is no single sourcecode found (as with hackcode1),
it does accept a directory with that name, after which the local Makefile is al-
lowed to take over. Clones, such as hackcode1_qp cannot be installed this way
though.

Don't forget to run the rehash command if a command was new. Everything
should be set up to use NEMO!

I.3.7 Documentation

The documentation of NEMO is manyold: �rst of all there is a Users and
Programmers Guide (what you are reading now), which is currently in LaTeX
format. Before you format this huge document, be sure to check if the nemo.dvi
or even the (compressed) nemo.ps postscript �le are not present in the manuals
directory:

% cd $NEMO/text/manual

% zcat nemo.ps.Z | lpr

or compile it:

% cd $NEMO/text/manual

% make nemo

and print it:

% dvipr nemo # or whatever your local version is called

7you may need a rehash command here

144 APPENDIX I. INSTALLATION, UPDATES AND EXPORTING

The program makeindex is needed by LaTeX, it is a public domain utility, see the
local Make�le for more details. The actual commands may be slightly di�erent
on your host. If makeindex does not compile or work for you, a dummy zero
length �le nemo.ind must be created, before LaTeX can be run. You will have
to live without an index in this case, or ask the distributors for the nemo.dvi or
proper nemo.idx �le. Be also aware that the manual (nemo.tex) uses include
�les (.inc) using the TEX �\input� command, and may also include direct
postscript �les using the special \ PSinsert command. There are a few logical
��ags� using the TEX \ newif command, e.g. in the top of the nemo.tex

document they are declared as:

\newif\ifnemo % declaration of the logical "variables"

\newif\ifdebug

\newif\ifindex

...

\nemotrue % setting the variables to true or false

\debugtrue

\indextrue

...

\ifindex % example use of such a conditional

\printindex

\fi

In particular, the \ ifdebug variable is used to comment the margins with all
the items that go into the index. This makes proofreading the manual very
e�cient.

The second form of documentation are online manual pages. For all programs
there is (or at least should be) a manual page (see man(1)). These can be
individually printed using a shell-script manlaser or:

% manlaser program.1

or

% troff -man -t program.1 | lpr -t

The command script $NEMO/usr/nemo/maint/PrintMan can be used to print
out allmanual pages 1,3,5 and 8, but also check the catman target in the toplevel
Make�le. This creates fmt �les, that can be sent directly to the printer. Be
careful about redundant information because of the .SO tro� command. The
fmt are normally logical links in this case, the script should take care of this,
and only print out proper �les and not links or zero length �les.

Third, there are the doc �les. They are needed by various front-end shell (as
described in Appendix B). The script mkpdoc will check if an update of this doc
�le is needed; this script is called by mknemo, the quick and dirty procedure to

I.4. TAILORING 145

install programs. In principle the doc �les don't have to be saved, since they
can be generated from the source code.

Fourth, there are the ctex �les. In a number of places the source code con-
tains mathematical details in TeX format. A small utility, ctex, extracts the
these from the source code, and standard tex utilities can be used to format
them. For example, most of the potential(5NEMO) descriptors have an as-
sociated CTEX section, from which Appendix ??:potential can be generated
automatically. Other examples are anisot.c and mkop.c.

I.3.8 SUN only: mirtool, ds, movie's

A number of window based utilities are available for Sun workstations. To install
them, you have to do it after the general NEMO installation, as some of them
need the NEMO library.

See $NEMO/Makefile for details how to install them.

I.4 Tailoring

NEMO has also fairly successfully been ported to various other UNIX machines,
such as a CONVEX supermini computer, several GOULD machines, a VAX
workstation running Ultrix 3.0, a Multi�ow Trace-14 and Cray Unicos. They
all required a few simple modi�cations, about which this section reports.

The �rst few (small) steps in the top-level Make�le require some attention, in
speci�c the cc-compiler and the make-utility have been assumed to have too
many options which are generally not true on all versions of UNIX. Note that
these 'in�exibilities' may disappear with time when BSD and SYSV UNIX merge
(expected release SUN OS 5.0 1992?).

I.4.1 Replacement scripts in NEMOBIN

Before NEMO V3 programs like cc, make and ranlib were sometimes replaced
with a script in $NEMOBIN.

I.4.2 YAPP graphics device driver

In compiling the major libraries and utilities in NEMO the proper graphics
package should be installed too. The $NEMO/src/kernel/yapp directory con-
tains a number of yapp implementations and your need to decide which yapp
interface(s) to use.

146 APPENDIX I. INSTALLATION, UPDATES AND EXPORTING

To test a particular graphics device you can use:

% cd $NEMO/src/kernel/yapp

% make yapptest_mongo

where the trailing _mongo part tests, in this case, the mongo device driver.

This usually means that the YAPPLIB environment variable in the startup
script $NEMO/NEMORC.local has to be adjusted accordingly.

I.4.3 Math libraries

There are one or two programs which use Numerical Recipes in C routines,
and the library libnumrec.a should be present in $NEMOLIB, or be symboli-
cally/logically linked to the real one if references remain unresolved during link-
ing. Note we might want to use double instead of �oat. Some other routines use
IMSL, and we also supply a few emulated IMSL routines in $NEMO/src/kernel/misc/imsl.c

I.4.4 LOADOBJ dynamic object loader

This package is still a major problem on most non-BSD UNIX implementa-
tions, and unfortunately many useful programs depend on it's functionality.
The BSD version (Sun3, Sun4, Ultrix) as well as SystemV COFF version are
fairly stable, but versions for complicated cpu's or non-standard object code
loaders, such as Alliant, Convex, Unicos and Multi�ow have given problems.
See source code documentation in loadobj.c must contain an entry for the
proper loadobjXXX.c �le. Good news is that the new SYSV4 revision, as well
as Sun OS 4.1 include the dlopen(3x) library utilities for dynamic linking.

I.4.5 Tailoring the NEMO kernel

It can be handy to know what a minimum subset of library routines will be in
order to run major portions of NEMO. Some of the comments below have never
been tried out, so beware! Also some comments apply how to tailor certain
routines for less functionality, if your local hostmachine is not as sophisticated.
It is our intention to have them de�ned in a �le options.h, although this may
complicate multi-cpu shared source code. In such cases they may need to be
de�ned via the cc script -D command line option, just as we currently use the
-I switch.

The source code of most of the barebone NEMO library routines can be found
in $NEMO/src/kernel/ and below.

I.5. EXPORTING 147

loadobj.c: This has been discussed before, a proper symbol must be de�ned,
in order for loadobj.c to include the correct loadobj source code type. Note
that the trigger may be used for you if no symbol has been supplied. usually
cpp supplies a trigger, such as sun, sparc, unicos, mips etc.

bodytrans.c: This routine is normally compiled with the -DSAVE_OBJ
compilation switch in which case bodytrans functions, which are not yet found,
will be saved to the standard repository directory $NEMOOBJ/bodytrans. this
option is now standard de�ned in options.h.

getparam.c: This �le contains many #define's which allow you to add a num-
ber of extensions to the user interface which have been discussed in Appendix
B: data history mechanism, interactive keyword and menu prompting, parsing
of expressions of getXparam() variables, interrupt to the review section, remote
machine execution, etc. For more documentation see the source code. none of
these run through options.h though.

image.c: This routine handles all image i/o (e.g. read_image, write_image,
create_image), and can be compiled in -DCDEF or -DFORDEF mode, de-
pending how your matrices in c should be stored in memory. The �ts interface
may not work properly when the wrong def is used???

I.4.6 isolation

If certain portions of NEMO's subroutine library appeal to you, yet you don't
want to drag the whole NEMO library along (this may not always be possible
though) you can isolate them, with probably the following modi�cations:

• • A call to error must be replaced with a simple printf followed by exit,
since these are supposed to be fatal errors, and the program should abort.

• • A call to warning must be replaced with a simple printf. no need to exit
the program though.

• • A call to dprintf must be replaced with a simple printf, by leaving of
the �rst (integer) argument, or by totally leaving it out of the code. It is
merely a debug-type printf, and could also be used with an #ifdef debug.

These are all small printf-like routines.

I.5 Exporting

There are a few automated ways to make full and partial (incremental) export
versions of NEMO. Full exports are described here, partial and incremental
backups in the next section. Again, it's best to be in NEMO's root directory:

148 APPENDIX I. INSTALLATION, UPDATES AND EXPORTING

% cd $NEMO

The �rst possibility is to make a tar-�le of the barebone source:8

% make tarfile [FILE=nemo.tar] [SRC="src usr"]

With the optional FILE keyword (note the upper case!) you can save the tar-�le
in a directory in which you have write permission, just in case your name is not
nemo. The default for FILE is nemo.tar in the current directory. It is currently
about 10 Mb, if both the src and usr tree are exported.

It is adviced to compress the tar �le, since in this case it saves a considerable
fraction:

% compress nemo.tar

The second possibility:

% make tarbackup [BACKUP=nemo-fullbck.tar]

creates a complete tar backup image on a disk�le. this disk�le can be any device
(�le/tape) using the optional backup keyword. Note that this tar image will be
very large, and is only handy to copy NEMO between identical systems, or make
a backup of the whole system, since also binary �les are backed up.

I.6 Small updates: tar import and export

The directory $NEMO/adm is the working directory from where incremental up-
dates are processed. A nightly script can be set up by the NEMO system man-
ager to export new �les to all other relevant sites which run NEMO on a regular
basis. All new �les are bundled together in a tar �le, to preserve directory struc-
ture and time stamps. These tar �les are then sent to the central site or other
sites. Similarly, other sites may export their tar �les with updated �les to your
local site. These imported tar�les are normally located in $NEMO/adm/import.
Scripts import.csh and export.csh handle the tra�c between tar �les and
the local directory. See also import(8NEMO) and export(8NEMO). Note that
inter-site collisions are not always handled properly.

I.6.1 make tar�le

If you know what to export, you can also use the tarfile target in the root
install Makefile. For example, in the case where NEMO has to be ported to

8To exclude hidden dot-�les, issue a �make purge� before creating exporting tar�les

I.6. SMALL UPDATES: TAR IMPORT AND EXPORT 149

a system with not that much �lespace, you could start by copying the kernel
�rst on the originator (as shown by the 1% prompt below) into a tar�le, the
tar�le is then copied to the destination (as shown by the 2% prompt below) and
extracted out there, after which installation can start:

1% cd $NEMO

1% make tarfile ASCIIDIRS="inc src/kernel"

....

2% cd $NEMO

2% tar xv nemo.tar

2% cd $NEMO/src/kernel

2% make install

This would copy all default ASCIIFILES, as speci�ed in the root Makefile, and
your choice of ASCIIDIRS into the tar �le (this bare minimum NEMO kernel
is currently about 2Mb).

After having gone through installation, as described earlier, the next step could
be to add the N-body package (or any other one listed in the $NEMO/src direc-
tory) on top of it:

1% cd $NEMO

1% make tarfile ASCIIDIRS=src/nbody ASCIIFILES=

....

2% cd $NEMO

2% tar xv nemo.tar

2% cd $NEMO/src/nbody

2% make install

This tar�le is currently about 1.5Mb.

Typically the installation procedure adds relevant routines to the NEMO li-
brary, after which mknemo should be able to install requested programs from
that package.

Table I.4: Small export tar �le

ASCIIDIRS ASCIIFILES Description
"inc src/kernel src/scripts" - Bootstrap kernel
src/tools "" Various utilities
src/nbody "" Nbody integration
src/image "" Image utilities
src/orbit "" Orbit utilities

150 APPENDIX I. INSTALLATION, UPDATES AND EXPORTING

I.6.2 WEB maintenance

I.7 Maintenance

The directory $NEMO/usr/nemo/maint contains a number of shell scripts and
C-programs which may be useful to do a few consistency checks, cross correlate
two versions of nemo etc. see local documentation, as this is still part of the old
NEMO V1.x release.

In the directory $NEMO/adm a few administrative �les will grow over time. They
may have to be cleaned up on regular intervals, or their features need to be shut
down. see also Section I.6.

• the �le NEMO.LOG is the accumulated log of the nightly script, which ex-
ports new �les to remote sites.

• the �le Usage is a usage list of all NEMO programs. It can be used
to create various statistics about usage by user, program, machine, time
etc. Use at your own discretion. the Usage �le is created by the user
interface, getparam(3NEMO), and a logical de�ned �ag USAGELOG in
getparam.c needs to turned o�. All of NEMO's programs would need to
be recompiled of course.

I.8 Other Libraries

Although NEMO can be installed without any additional libraries, a few com-
mon ones

Many libraries use the configure scripts, and notably with the �prefix= com-
mand line to install their include �les, libraries and other ancillary data in
standard locations such as /usr/local. For this purpose NEMO now supports
installing them within the NEMO hierarchy, to ensure ease of porting with the
same compiler and environment:

configure --prefix=$NEMO/opt

make

make install

I.8. OTHER LIBRARIES 151

Table I.5: Optional Libraries NEMO can use
library version comments
pgplot 5.22 (carma) yapp graphics library
plplot 5.x yapp graphics library
hdf 4.x data I/O library (e.g. hdfgrid, sds�ts)
gsl 1.4 Gnu Scienti�c Library - optional
c�tsio 5.x �ts I/O library - optional

152 APPENDIX I. INSTALLATION, UPDATES AND EXPORTING

Appendix J

Troubleshooting

Fatal errors are caught by most NEMO programs by calling the function error

(see error(3NEMO)); it reports the name of the invoked program and some
o�ending text that was the argument to the function, and then exits. If the
$ERROR level is larger than 0, an error call can postpone the exit for the
speci�ed amount of times. If the $DEBUG level is positive, programs also
produce a coredump, which can be further examined with local system utilities
such as adb(1) or dbx(1). Most of the error messages should be descriptive
enough, but a list is being compiled for the somewhat less obvious ones.

Another annoying feature can be large amount of environment variables used by
packages. NEMO is no exception. In Section J.2 below all of the environment
variables used by NEMO are listed and their functionality. Sometimes they
interfere if used in conjunction with other packages.

J.1 List of Run Time Errors

This section presents an alphabetical list of fatal error messages, as generated by
error(3NEMO). Although this list is not meant to be complete, it hopes to report
on the most common bizarre errors found when using NEMO, and their possible
cures. The ones not listed here should be descriptive enough to guide the user
to a solution. Sometimes execution errors can be better understood when the
DEBUG environment variable is set to a high(er) value, or the debug= system
keyword is added to the command-line. See Appendix B on it's use.

Now the list of error messages and their possible cures:

assertion failed: file f line n

153

154 APPENDIX J. TROUBLESHOOTING

The program was compiled with an active assert(2) macro. An expression was
expected to be true at this point in the program. Program exits when this
was not the case. An infamous failed assertion is file load.c line 91 or
thereabouts, part of the hackcode1 N-body integrator. Two particles were too
close (or on top of each other) such that space could not be subdivided within
32 levels of the oct tree. There is no good solution to this problem.

findstream: No free slots

Too many open �les. Either the program didn't cleanup (close) its �les af-
ter usage, or your current application really needs more than the default 16
which is #defined in filesecret.h by the macro StrTabLen. Recompile the
filesecret.c and the appropriate application tasks.

get_tes: set=A tes=B

This points to a programming error or error in the logic during �lestruct(3NEMO)
I/O. During program execution a hierarchical set A was requested to be closed,
but the program was still within set B (set B had not been closed yet).

gethdr: ItemFlag = 0164

Input was attempted on a �le assumed to be in old �lestruct(5NEMO) format.
Apparently it was not, �le may also have been in new �lestruct format. Hints:
Try tsf(1NEMO), hd(1NEMO), od(1) and as last resort more(1).

gethdr: bad magic: 0164

Input was attempted on a �le assumed to be in �lestruct(5NEMO) format.
Apparently it was not. Hints: Try tsf(1NEMO), hd(1NEMO), od(1) and as
last resort more(1).

loadobj: file must be in .o format

It is possible that the non-portable dynamic object loader (loadobj.c) indeed
proves to be non-portable here. Either you requested a wrong �le, which is
not in object format, or this UNIX version has a di�erent object �le structure.
Cure: a lot of hacking in loadobj.c, assuming no pilot error.

loadobj: undefined symbol _XXXX

J.1. LIST OF RUN TIME ERRORS 155

There are three possible causes. It might be that you have just supplied a
'new' object �le to a program, which happens to call a function which was
not linked in by the calling program. Find out in which �lestructure 'group'
(Nbody, Orbit, Image) your invoked program falls, and add appropriate dummy
code to the library function. E.g. in the case of potential(5NEMO) data �les,
you might have to add a speci�c math function to $NEMO/inc/mathlinker.h,
or add some coding to the end of $NEMO/src/orbit/potential/potential.c
and rebuild the appropriate orbit(1/3NEMO) library/commands. The standard
UNIX utility nm(1) help �nding all unde�ned symbols in an object �le. Cross
check this with the executable.

The second possibility is that the executable was stripped, i.e. it had no symbol
table. Try nm(1) to �nd out, or use file(1).

The last cause is much more serious: the non-portable dynamic object loader
(loadobj.c) indeed seems to be non-portable here. This might mean serious
hacking in loadobj.c, we cannot give any advice on this right now.

loadobj: word relocation not supported

It is possible that the non-portable dynamic object loader (loadobj.c) indeed
proves to be non-portable here. This might mean serious hacking in loadobj.c.

makecell: need more than XX cells; increase fcells=

This is actually sort of a pilot error, but may sound a bit obscure to a beginning
user. Space for cells used in the hackcode force calculation is allocated dynami-
cally, as well as for the particles. 'fcells' is the ratio of allocated cells to particles
and is a parameter to most programs who use the hackcode force calculation.
For small N-body systems (less then about 100) this ratio may have to be in-
creased, 2 usually is enough. Note that in the regime where fcells is required
larger, the hackcode force calculation is usually not the most e�cient method
to compute forces anyhow.

Malformed or non-terminated attribute-value list.

This error is actually from one of the Sunview routines, and is a result of a too
large bu�er to display (in header or 'below' a mouse button). It will happen
when the number of �les in a directory is too large to display below the Run
button in mirtool.

mysymbols: file must be executable

It is possible that the non-portable dynamic object loader (loadobj.c) indeed
proves to be non-portable. The program which you just executed does not have
the executable format the dynamic object loader thinks it should have.

156 APPENDIX J. TROUBLESHOOTING

No man entry for XXX.Y

No online manual page for this, although perhaps the MANPATH environment
variable has not been properly set, or your UNIX version does not support
multiple man-root directories, in which case consult the manual page of man(1).
The SUN OS does, as well as BSD 4.3 (?). Perhaps a special man-script/alias
with an extra -M �ag needs to be installed in this case if MANPATH is not
supported. See also the lpath variable on some systems.

put_snap_XXX: not implemented

Here 'XXX' may be 'key' or 'aux' or something else. You have an old version of
the code, while the datastructure of the snapshot has an 'XXX' (You may con-
�rm this with tsf(1NEMO). Recompile the program with a more recent version
of 〈snapshot/put_snap.c〉 and possibly 〈snapshot/body.h〉.

readparam: No interactive input allowed

The keyword help= or the equivalent environment variable HELP has been
assigned a digit to request interactive input. In addition you requested some
�le I/O through either redirection or piping. Get rid of at least one of them.

rsh: could not execute rsh

Program could not execute itself on a remote machine. It may have various rea-
sons for failing. The rsh program may not exist on your host, in which case the
getparam(3NEMO) might as well have been compiled without the REMOTE
�ag. The other possibility is that the .rhosts �le on your system does not
contain an entry for the machine you wanted to rsh to. In interactive usage it
will then ask for a password, executed through execvp(3) normally fails. A third
possibility is that the remote machine did not have the executable present.

Badly placed ()'s

You tried to pass an expression with parentheses, but since the UNIX shell gives
them special meaning, you need to �escape� them from the shell, e.g.

% snapplot in=snap001 xvar=r yvar=log(aux)

you need to type any of:

% snapplot in=snap001 xvar=r 'yvar=log(aux)'

% snapplot in=snap001 xvar=r yvar=log\(aux\)

J.2. ENVIRONMENT VARIABLES USED BY NEMO 157

J.2 Environment Variables used by NEMO

Occasionally NEMO's environment can interfere with those of other packages.
The following list of environment variables have some meaning to NEMO. A
default is usually activated when the environment variable is absent.

BELL If BELL is set (1), a number of user-interface routines become noisy.
The default is 0.

BTRPATH List of directories where bodytrans(3NEMO) functions can be stored
for retrieval. The default is /usr/nemo/obj/bodytrans. Normally set to
".:$NEMOOBJ/bodytrans" in NEMORC.

CFLAGS Options for the C compiler for on-the �y compilations under NEMO
V2. Not used for NEMO V3. See e.g. bodytrans(1NEMO). When not set,
no compilation options used. When set, some make(1) implementations
will also use it when the environment is imported.

DEBUG Debug level, must be between 0 and 9. The higher the number,
the more debug output appear on stderr. The default is 0. See get-
param(3NEMO). DEBUG is also used as system keyword, in which case
the environment variable is ignored.

EDITOR Editor used when helplevel 4 is included. The default is vi (see
vi(1)). See also getparam(3NEMO).

ERROR Error level for irrecoverable errors. If this environment variable is
present, and its numeric value is positive, this is the number of times that
such fatal error calls are bypassed; after that the the program really stops.
See also getparam(3NEMO).

FLOAT_OPTION Used by Sun3s native cc(1) compiler which �oating point
unit to use. Options are, amongst others, ffpa, f68881. This environ-
ment variable has to be turned o� on Sun4s.

HELP Help level, can be any combination of numerically adding 0, 1, 2, and
4, and any combination of '?', 'a', 'h', 'p', 'd', 'q', 't' and 'n'. See get-
param(3NEMO). HELP is also used as system keyword, in which case
the environment variable is ignored. The numeric part of the help string
should come �rst.

HISTORY Setting it to 0 causes history data NOT to be written, the default
is 1 (see getparam(3NEMO)). A few old programs may use the keyword
amnesia= for this.

HOSTTYPE In case of multiCPU environment, which has to be served from
the same NEMORC and/or .cshrc �le, this variable will have the CPU type
in it, e.g. sun3 or sun4, which are used to break up the bin, lib and obj

directories. It is also used in some Make�les.

158 APPENDIX J. TROUBLESHOOTING

INCLUDE List of directories from where to include NEMO header �les when
compiling. Used by the mycc(1NEMO) preprocessor and some cc-scripts.
This environment variable is not actively used anymore. �deprecated�

LIBRARY List of directories used to resolve NEMO library references in the
compile/link command. Used by the mycc(1NEMO) preprocessor and
some cc-scripts. This environment variable is not actively used anymore.
�deprecated�

MANPATH Used by UNIX to be able to address more than one area of man-
ual pages. Normally set to $NEMO/man:/usr/man by the NEMORC �le. Does
not work in Ultrix 3.0, but perhaps the -P switch may be used.

NEMO The root directory for NEMO. Normally the only environment variable
which a user has to de�ne himself, in his .cshrc startup �le. No default.

NEMOBIN Directory where nemo's binaries live, de�ned in NEMORC. No de-
fault.

NEMODOC Directory where the *.doc �les for mirtool and miriad shell should
be looked for. The system default is $NEMO/man/doc, set by NEMORC.
No default.

NEMODEF Directory where keyword �les from mirtool/miriad are stored/retrieved.
The default is the current directory.

NEMOLIB Directory where nemo's libraries live. Normally set by . No de-
fault. NEMORC.

NEMOLOG Filename used as log�le for tasks submitted through nemotool.

NEMOOBJ Directory were (binary) object �les live. They are used by a
variety of nemo programs, and generally do not concern the user. Usually
set by NEMORC.

NEMOPATH Same as NEMO, but kept for historical reasons. It is normally
de�ned in the NEMORC �le. �deprecated�

NEMOSITE The site name, which is also an alias used in case the import/export
features with the central site are to be maintained.

PATH UNIX search-path for executables, normally set in your own shell startup
�le (.cshrc or .login). Should contain NEMOBIN early in the path de�ni-
tion, before /usr/bin and /bin to rede�ne the cc and make programs. See
Appendix A

POTPATH List of directories where potential(5NEMO) functions can be stored.
The default is /usr/nemo/obj/potential.

REVIEW If this variable is set, the REVIEW section is entered before the
program is run. [default: not set or 0]

J.3. KNOWN BUGS AND FEATURES 159

YAPP Yapp graphics output device. Usage depends which yapp(3NEMO) the
program was linked with. See also getparam(3NEMO) and yapp(5NEMO).
YAPP is also used as system keyword, in which case the environment
variable is ignored.

YAPPLIB Libraries needed to link a program which the default YAPP graph-
ics device. No default.

See also the manual pages of �les(1NEMO).

J.3 Known Bugs and Features

A few known bugs and features are listed here, some of which are hard to ��x�.
Some of them are also of little interest to users, but programmers have to be
aware of the pittfalls.

• Of items with the same name only the �rst one can be accessed if the
item is within a hierarchical set. On the top level items are accessed
sequentially. In particular, a C-programming construction like

get_set(instream,tagname)

while(get_tag_ok(instream,myitem)) {

get_data(...)

}

get_tes(instream,tagname)

would run into an in�nite loop. Programmers should be careful not to
construct such datasets, in particular it means one cannot portably wrap
an existing dataset inside an item. Multiple history items are an example
of this behavior.

• a �le with multiple snapshots which vary in size doesn't get it's memory re-
allocated, and hence programs will likely to crash if any snapshot is larger
than the �rst one1 The �problem� is in the �le $NEMOINC/snapshot/get_snap.c.
A possible solution is to free the snapshot, or just reset the snapshot to a
NULL pointer, and force it to be allocated again. One surely relies on a
well designed swap space management system. Here's an example of this
terrible coding kludge:

Body *btab;

1currently the output of unbind may do this for you

160 APPENDIX J. TROUBLESHOOTING

for(;;) {

get_history(instr);

if (!get_tag_ok(instr, SnapShotTag))

break;

get_snap(instr, &btab, &nbody, &tsnap, &bits);

...

btab = NULL;

} /* for(;;) */

Appendix K

Glossary

bodytrans Dataformat that is used to perform arbitrary operations on expression
variables used in snapshot's.

ccd Synonymous for image; most programs in NEMO which handle images
start or end with �ccd�.

�e Most expressions that you give to program keywords are parsed by nemo�e
and eventually �e. (Nomenclature borrowed from GIPSY)

�ts �Flexible Interchange Transport System�, a standard dataformat used to
interchange data between machines. Commonly used for images.

history Each NEMO dataset normally contains a data history in the form of of
history items at the beginnging of the dataset. They are normally kept
track of by the data processing programs, and can be displayed with the
program hisf.

image Dataformat in NEMO, used to represent 2- and 3-D images/data cubes.
See also ccd.

miriad Another astronomical data reduction package, from which we have bor-
rowed some user interfaces (miriad and mirtool) which are plug-compatible
with our command-line syntax.

orbit Dataformat in NEMO used to represent a stellar orbit; most programs in
NEMO which handle orbits start or end with �orb�.

potential Dataformat in NEMO used to represent a potential; most programs in
NEMO which handle potentials start or end with �pot�.

program keyword Keywords that are de�ned by the program only. They can be seen by
using the help= keyword (in itself being a system keyword).

161

162 APPENDIX K. GLOSSARY

review A small user interface that pops up when a program is interrupted. Type
quit to exit it, or ? for help. This feature of the user interface may not
be installed in your version.

set Compound hierarchical data-structure of a structured �le. They are the
equivalent of a C structure.

snapshot Dataformat used in NEMO to represent an N-body system. Most pro-
grams that handle snapshot's in NEMO start or end with �snap�.

structured �le The binary data NEMO writes is in a hierarchical structured format. Pro-
grams like rsf, rsf and csf perform general and basic I/O functions on
such �les. They are hierarchical structured sets.

system keyword Global keyword that every NEMO program knows about, and are not
listed in the (program) keywords that can be seen by issuing e.g. help=

(in itself being a system keyword).

yapp �Yet Another Plotting Package�, the library de�nition that is used by all
programs that produce graphics output. It is kept very simple. The yapp=
system keyword controls the graphics device de�nitions/capabilities.

Appendix L

Future, Present and Past

This Appendix contains a number of fairly random remarks on some remaining
di�culties in NEMO, and what we may do to resolve them, and other things
which may happen to NEMO over the next years1. A proper history is given of
its past, and can be found in itemized form in L.4

L.1 Some present problems

L.1.1 Graphics

Yapp can only be linked in once, there's no dispatcher, and di�erent versions of
the program exist for di�erent graphics output devices.

It would be nice to have more general dispatcher, which fully utilizes the yapp=
system keyword, may be used such that only one compiled version of the pro-
gram is needed.

E.g. on the SUN we could use:

yapp_core: generic yapp using suntools (deprecated)

yapp_cg: extended suntools version with color support (deprecated)

yapp_ps: output to a postscript �le, for Postscript device. (color not yet
implemented)

yapp_mongo: interface which connects to mongo-87. (deprecated)

1The rumors of my death have been greatly exaggerated...

163

164 APPENDIX L. FUTURE, PRESENT AND PAST

yapp_pgplot: interface which connects to pgplot package. This implemen-
tation also has the great advantage of being able to handle a variety of
terminals and printers fairly transparent. This is the one we use mostly.

yapp_plplot: interface which connects to plplot package.

We use the environment variable YAPPLIB in Make�le's. This environment
variable is also set by your local NEMO guru in NEMORC.local �le (normally
initialized by reading it by a users .cshrc �le) or you have to add them speci�-
cally to your .cshrc �le. This makes it easier to install a new version of NEMO
where a di�erent graphics package will been used.

In some older versions of NEMO some of the Make�le's may have not been
modi�ed to have these �exible setups, or the variable.

Sometimes, the need occurs for a speci�c YAPP interface, besides default one.
Programs which speci�cally address a graphics device have the base name (e.g.
snapplot, appended with an underscore and the device ID, e.g. snapplot_ps

or snapplot_cg. Best is to check the $NEMOBIN directory.

The installer should carefully read the Makefile and/or README �le in the direc-
tory $NEMO/src/kernel/yapp for instructions regarding speci�c installations of
yapp interfaces.

Programs would have to be recompiled manually, as in the following example,
because most Make�le's have hardwired graphics library names in them:

% make snapplot YAPPLIB="$YAPP_PS"

% mv snapplot $NEMOBIN/snapplot_ps

L.1.2 System independent �le structure

Currently the �le structure is tied in with the operating system routines fread(3)
and fwrite(3), and binary �les cannot be guarenteed2 to be used across machines
with di�erent data types (size/�oating point conventions etc.). This problem is
only partially solved by using programs such as tsf(1NEMO) and rsf(1NEMO):
it still requires physical data modi�cation, transport and again modi�cation.
(UNICOS) cannot be read on a SUN, however data�les on e.g. an Alliant, Mul-
ti�ow and SUN are binary compatible because of IEEE �oating point numbers
and the proper size twos complement integers. Support exists now for byte-
swapping, such that �les on Sun and Dec can be read and written either way.
However, machines like the CRAY supercomputer with its deviating size and
�oating point format will have to convert their data as is exempli�ed in Section
5.6.

2for IEEE and twos-complement data automatic byte-swap detection this problem has been
solved

L.1. SOME PRESENT PROBLEMS 165

A possible solution is the way data is written to disk in a package as miriad: the
layer just before the fread/fwrite packs the data in some prede�ned standard
format (IEEE �oating point and twos complement integers seem an obvious
choice at this time). This causes a small overhead on some machines, and on
other machines it is nothing more than a copy operation or even passing of
pointers.

L.1.3 File size - �oat vs. double

For a really large number of bodies (to take the example of particle pushers) �le-
size becomes important for many analysis programs which become I/O bound:

• It is not always necessary to keep information in double precision. Images
are also stored in doubles, in good faith with old C, where all math is
intrinsically done in double precision. This would save a factor of 2 in
space. There exist data i/o routines with force �oat/double conversions
(get_data_coerced()).

• It is not always needed to keep all 6 phase space coordinates, besides the
data structure of snapshots has phase coordinates rather well tied in, it's
not easy yet to separate positions and velocities, and only store positions
in a data�le. This would save another factor of 2.

• Images: totally unneeded to have them in double precision. Should become
'float'. Since we have used the real type

L.1.4 Some shortcuts and hints

• You can set $NEMO to a 'universal' path as "/usr/nemo" and make a
symbolic link of this �le to the actual physical location of nemo. In a
�le cluster system the actual location of NEMO might be on a common
�leserver. Normally you have to become superuser to make the link

cd /usr

ln -s /usr/guinness/nemo

This means that your .cshrc can always keep the same

setenv NEMO /usr/nemo

and have the symbolic link take over the work for you.

• The use of FLOAT_OPTION is encouraged on the SUN3, because it al-
lows a �exible change from a system with di�erent �oating point hard-
ware. Perhaps the CFLAGS in most Make�les should have the inclusion

166 APPENDIX L. FUTURE, PRESENT AND PAST

CFLAGS=$(FLOAT_OPTION) for compatibility reasons with other-than-
SUN systems??? Beware that only the NEMO variable is exported to a
Make�le (but see below)

• When, while trying to compile, the cc compiler does not seem to �nd the
NEMO include �le, it is probably an indication that the cc in $NEMOBIN

has not the proper �ags. In particular, some versions of the cc-compiler
do not support the -L �ag (e.g. Ultrix, Sun UNIX 4.2 Release 3.1FCS)
Make sure the 'cc' and 'make' are properly placed in the $NEMOBIN.

• On a SUN3 �oating point intensive programs will run a lot faster when the
inline �oating point libraries are used. Instead linking with the standard
math library (-lm), link it with /usr/lib/f68881.il or /usr/lib/ffpa.il.
The fortran TREECODE only gains about 5% in speed, but �oating point
intensive programs can gain up to 30% in speed.

• The best run-time performance from SUN4 compilers for compute-bound
applications is usually obtained from some combination of the following
compile-time options:

Fortran 1.3.1:

-O4 -cg89 -libmil -dalign -fnonstd -Bstatic

C 1.0:

-O4 -cg89 -libmil -dalign -fnonstd -Bstatic -fsingle

These are discussed in the Numerical Computation Guide which accom-
panies C 1.0 and Fortran 1.3.1. Also the default swap and /tmp partitions
supplied by SunOS are often insu�cient to fully optimize some large pro-
grams. Use swapon(8) in the �rst instance and -temp=... compile option,
described in cc(1) and f77(1), in the second instance.

L.2 Future

A wishlist and what may be forthcoming in some future release of NEMO:

• graphics: yapp_server to work across machines. Not necessarily X11 server
- but likely so. This �nally means a full implementation of the yapp=
system keyword and also would make executables a lot smaller. Also a
plot(3) interface.

• graphics: yapp_x: An honest X11 graphics server.

• image display: more support for display facilities, e.g. ds(1L).

• loadobj should understand constant expressions

L.2. FUTURE 167

• SPH : utilities.

• The everlasting expansion of the manual: more examples, tutorials for course
work, Figures, tables etc etc.

• loadobj for COFF (SUN386i, most SYS5 implementations, Convex). (par-
tially done, 3b1 version works)

• ???shared libraries for the latest SUN OS 4.1 system??? Is a rather laborious
thing, and di�cult to maintain in a environment where the library is
frequently upgraded.

• dynamic object loader for N-body diagnostics

• options.h through stdinc.h or nemo.h?

• handle multi-snapshot �les more e�ciently

• loadobj for MF, UNICOS, Alliant and Convex do not work!! The only reliable
implementation we have is BSD (SUN OS) and Ultrix and a SYSV (3b1).
SPARC also seems to be stable, and MIPS COFF is not quite done yet.

• loadobj in yacc?, nemoinp in yacc? (cf. sm)

• Utility for chaining programs in (nsh?) shell scripts, automatic passing of
in/out �les from on to the next. See pipe shell script for example.

• Install the o�cial NBODY1 and NBODY2 programs from Aarseth with
NEMO's user interface and �le structure, as has been done for NBODY0

• Adaptation of all C programs to the ANSI standard. Usage of the GNU
gcc compiler recommended for portability. This process is now underway
(march 90 - PJT). It is also likely that the GNU make program will be
used on the long run, and making small updates to the package will be a
lot easier. (more portable make?)

168 APPENDIX L. FUTURE, PRESENT AND PAST

L.3 New Features

This section is not updated frequently, for more timely information it is probably
better to consult http://www.astro.umd.edu/nemo/whatsnew.html.

L.3.1 Release 3.3

To be released around the 2nd NbodySchool (Amsterdam, July 23-30 2005).
Improved support to help installing various ancillary packages needed for the
summer school (dubbed �manybody� in $NEMO/usr/manybody). The I/O library
was updated with the ability to handle blocked I/O.

L.3.2 Release 3.2

Was released April 11, 2003, just after the Strasbourg N-body school. The
multi-CPU directory tree often made the bootstrap installation with libraries
such as pgplot, gsl, c�tsio etc. harder. Also the installation on MacOSX 10.3
was now streamlined, though still not perfect "out of the box" like it still does
on most solaris and linux boxes.

• back to a top level make bins, which creates "all" binaries. It currently
creates about twice as many binaries as the old more reliable/robust
src/scripts/testsuite -b method.

L.3.3 Release 3.0

Was released April 1, 2001. Certainly not a joke. Source code has been released
within CVS for subsquent development with the partiview and starlab modules,
also under CVS. Installation has now completely been done using con�gure, an
autoconf product. 3.0.0 was never released, 3.0.1 was the �rst o�cial release
that worked under linux. Solaris and SGI.

• con�gure support

• loadobj support now using .so �les, not .o �les.

L.3.4 Release MD-2.5

Was released December 1999, with initial support for con�gure. This series had
5 subreleased though 2.5.5, but 2.5.6 was never released in favor of 3.0.0. No
major changes through this release.

L.3. NEW FEATURES 169

L.3.5 Release MD-2.4

Was released April 1, 1997.

L.3.6 Release MD-2.3

•We are now using an o�cial versioning scheme, with major, minor and patch-
level.

• The dreaded dynamic object loader has been made to work on the DEC
Alpha (OSF1 V3.2) and SGI (IRIS 5.2) using a new system utility ldso.
This has increased the portability, but not taken away the fundamental
di�culty in installing NEMO on a new operating system.

L.3.7 Release MD-2.2

• Full support for Solaris 2.x. (tested on 2.3) The default graphics yapp device
should now be generic X and Postscript. loadobj method is now supported
by the operating system.

• Compiling with -DSINGLEPREC actually caused lots of programs, include
hackcode1, not to run properly. Most of the bugs associated with this have
been removed, but for example LINUX is very sensitive to such errors and
still a lot of programs will crash in this mode.

L.3.8 Release MD-2.1

• Literate Programming: trying CTEX embedded comments in e.g. the poten-
tial descriptors, and anisot.c

• Properly documented and advertised use of using binary structured �les in
pipes.

• Some support for Starlab in the form of NEMO++. Translation programs
to convert from a dyn to a snapshot have been written. Apart from
properly ANSI-coding the NEMO kernel, the routine nemomain.c needs
to be present in C++ format too: nemomain.C.

• Potentials are now supposed to return a pattern speed (even if it was not
changed) into the �rst argument of the potpars array. This to deal with
rotating potentials.

170 APPENDIX L. FUTURE, PRESENT AND PAST

L.3.9 Release MD-2.0

With this major release upgrade the directory structure has been modi�ed away
from 'user' oriented to 'topic' oriented. The 'user' oriented stu� is now under
$NEMO/usr, whereas the more stable 'topic' oriented under $NEMO/src. Some
�les live in both, in which case the $NEMO/src version should take preference.

• dlopen() version of loadobj, as well as ldl (�gnu�). Still some problems, but
they are Sun bugs, not ours. Certain complicated expressions fail. dlopen
may also work on NeXT.

• yapp and loadobj separated out and cleaned up

• small subset of numerical recipes maintained

• stories in snapshots

• random access additions to �lestruct, and support for little and big-endian
machines using auto-byte-swapping. Hence no Macro's used. Slow?

• bodytrans using �e.

L.3.10 Release MD-1.4

Yet another non-release - summer 1990.

• Miriad shell implemented as nemo through an alias. The old nemo program
renamed to nemoshow. The mirtool can also be compiled to nemotool.

• Sault's FITS I/O routine replace Werong. No real need for a Fortran-C
interface anymore. New FITS routines in image.

• Experimental Micro-NEMO in src/nemo/micro.

• Manual now reaches about 100 pages.

L.3.11 Release MD-1.3

Newly released option until February 1990.

• potential(5NEMO) has extra time parameter, relevant programs have been
updated.

• hackcode3 is an experimental version which allows an extra external potential
through the potential(5) format. It also has the option of keeping the �rst
nrigid particles rigid, and more silly options are expected. It should be
noted that hackcode2, an experimental toy, has never been released.

L.3. NEW FEATURES 171

• The user interface getparam() now supports reading the value(s) of a key-
word from a �le using the key=@file construct.

L.3.12 Release MD-1.2

Newly released option until November 1989

• Introduction of the HOSTTYPE environment variable in the NEMORC
�le. This meant that new environment variables such as NEMOBIN,
NEMOLIB and NEMOOBJ are derived from NEMO and HOSTTYPE.
See the NEMORC �le. It also meant that basically all Make�le's had to
be updated.

• Libraries are a bit screwed up now, and best is to include both libT.a and
libJ.a in the minimum list of libraries. Make�les are being updated for
this. One can also use libNEMO.a, and use utilities such as mklib, addlib
and mkbin.

• bodytrans enhanced, has a proper database of expressions, which is dynami-
cally updated when bodytrans(3) is used. The �le $NEMOOBJ/bodytrans/BTNAMES
contains a list of extra expressions currently understood. Make sure those
directories are write permissible by the world.

• Loadobj is now also functional for Sparc (sun4) and COFF (System V UNIX).
The SPARC version requires loading with -Dsun4 -Bstatic since often
required symbols, such as integer multiplication, are in shared libraries.
This unfortunately makes those binaries larger than they could be.

L.3.13 Release MD-1.1

A description of the major di�erences between the existing IAS version and the
newly released MD version 1.1 (summer 1989):

• Improved user interface: suntools menu interface at help=8. The sophistica-
tion of the user interface is determined at compile time through a number
of compile switches in getparam.c

• Standardized usage of some standard interactive facilities using setparam

instead of and with help of getparam.

• Installation through Make�les is more �exible. The installation and vari-
ous administrative utilities are more streamlined to make porting to non-
SUN's easier.

172 APPENDIX L. FUTURE, PRESENT AND PAST

• Aarseth's straight N-body code - as published in BT87 is in nbody0 and an
Ahmad-Cohen version in nbody2 (this last one has not been tested out
well enough) These programs have a NEMO interface, which also handles
some Fortran-C interface questions.

• �lestruct_old is now obscure: all of Piet's clib programs have been converted
(snaplist, snapenter, snapdist, mkplummer)

• various new yapp's, the $NEMO/src/nemo/yapp directory has been cleaned
up and documentation has been updated.

• bodytrans saving: the program bodytrans can be tested and also save �les
(-DSAVE_OBJ compile switch) - same for library routines.

• snapplot and movies work better together; snapplotedit.

• potcode

• ds, image display on image(5) or �ts(5) �les.

• fortran interface

• GRAVSIM added to nemo/src tree

• lars/treecode has been added, but needs a good recursive fortran compiler.
NEMO interfaces built in. Not been able to test well - Does not work on
Suns..

• The NEMO startup �le is now called NEMORC.

• This expanded manual.

L.4. HISTORY OF NEMO 173

L.4 HISTORY of NEMO

Oct 86 - Jun 87 Initial development on a network of SUN3 workstations at
the Institute for Advanced Study, Princeton, NJ by Barnes, Hut and
Teuben.

Jun 87 export version, for easy installing on BSD4.2, we call it alpha version
1.0a.

Jul 87 test phase for installing on an VAX 8300 running Ultrix 1.2: mods:
Make�le, new cc and make (cc has no -L �ag on ultrix) tsf.c casting of
pointers and advancing pointers �xed

-Mar 88 various installations at MIT, Drexel U. in Philadelphia, U.of Illinois
at Urbana (Convex, Alliant, Gould) tested and done. New programs and
updated programs keep coming in at a steady rate.

Mar 88 Many UIUC changes: getparam() has a few new system keywords,
(debug, yapp, host). History mechanism in data �le I/O means that now
get_hist() and put_hist() must be called, optionally add_hist(). dprintf()
added to getparam.c for user debugging aid, can now be called in user
programs. Yapp_mongo used. Environment variables YAPPLINT and
YAPPLINP are now encouraged in user Make�les. Documentation into
one big TeX �le for users as well as programmers.

Jun 88 IAS and UIUC versions have been merged again. Improved �lestruc-
ture (Josh), user interface, data history mechanism, yapp interface (Pe-
ter). Documentation end manuals signi�cantly improved. Still a number
of items in the 'problems' area not resolved.

Nov 88 IAS and UIUC versions have been merged again.

Spring 89 Manual updated - working on class/course problems - lots of work-
ing examples added to manual. MD version is now slowly diverging from
IAS version.

Summer 89 Groningen version installed on a combined SUN/Alliant network
- shows di�culty of maintaining a shared disk environment with di�erent
versions of the binaries (binX, libX, objX, datX) -

August 1989 Version prepared for o�cial beta release 1.1. (Maryland)

December 1989 Experimental multi-CPU release (1.2) (Maryland)

February 1990 Minor upgrades, mainly SUN4 and multi-CPU bugs. (1.3).
Toronto's version has been dubbed ZENO now.

May 1990 Slightly expanded manual for the Pittsburgh Workshop and some
minor upgrades every here and there.

174 APPENDIX L. FUTURE, PRESENT AND PAST

Summer/Fall 1990 An attempt to merge Starlab and Nemo - added some
extra functionality to �lestruct and merged story concept. Total directory
structure overhaul: all code related to a particular topic is in its own
directory in $NEMO/src. The tree starting at $NEMO/usr will now be used
for user contributed software. In particular, $NEMO/src/kernel contains
a small core of NEMO which can be used without any of the parallel
branches.

Fall 1991 Slowly progressing the $NEMO/src tree. A few new sites for export
maintained.

Summer 1993 Some support for C++ and Starlab.

January 1994 Solaris 2.x support, started WWW.

Winter 1995 Linux, Dec Alpha and SGI support added, since they allow dy-
namic object loading. Manual in html (latex2html)

Spring 2001 Installation converted to con�gure/autoconf, also using CVS for
source code control now.

April 2004 Slight directory change for the directories created during the in-
stallation, this ends the era of the multi-CPU tree. Also removed a last
environment variable that was used in Make�les, now they are all inher-
ited from the ones created by con�gure. Released between the Strasbourg
Nbody-school and the College Park FAM04 tutorial/workshop weeks.

Summer 2005 Second summerschool, at MODEST-5c, In Amsterdam. Man-
ual expanded with more examples.

Index

-,�lename, 54, 69
.cshrc, 3, 61, 91, 138
.login, 3, 91
.nemorc, 92
$, environment variables, 9, 157
205 format, atos, 54
3D viewing, 32
3dmovie, 31

Aarseth S., xxiii, 117, 119, 167, 172
ABS, 63
add_history, 74
ADIL, 43
Aguilar L., xvii
AIPS, 55
AIPS, FITTP, 56
AIPS,IMLOD, 55
aito� projection, 30
Alliant, 117, 146
angular momentum, 30
anisot, ctex, 169
app_history, 74
ASF, Ascii Structured File, 13
atos(1), 53, 54
awk, 45, 54
awk, script, 17

background, 101
bake, 142
bake, make script, 76, 79
Barnes J., xxiii, 27, 117
bash, shell, 11
BELL, environment, 157
Bellon M., xxiii, 117, 172
benchmarks, 117
Binney J., 119
bitmap, 31

blocked I/O, 72
Body, structure, 73
body.h, 73
bodytrans, 161
bodytrans(1), 18, 28, 147
bodytrans(3), 28, 170
bool, 63
bourne shell, 17
BSF, Binary Structured File, 14
BTRPATH, environment, 18, 30, 157
bug, xvii
bugs, known, 159
byte, 63

Casertano S., xxiii
cat, 71
catman, 144
cc, script, 141, 158
ccd�ts(1), 56
ccdmath(1), 38
ccdplot, 21
ccdsmooth(1), 38
CFLAGS, environment, 157
chaining programs, 167
COFF, 167
commandlines, maximum length, 37
compile on the �y, 18
compiling, NEMO programs, 75
compress, 53, 139, 148
contour, 39
contour diagram, 35
conversion, data, 53
Convex, 53, 117, 145, 146
cpp, trigger, 147
cputime, 98
Cray, 117
ctex, 169

175

176 INDEX

ctex, tex extractor, 145
CVS, 137
cvs, GSL, 135
Cyber, 117

data, catenation, 71
data, conversion, 53
data, format problem, 164
data, large, 34
dd, reading FITS �les, 56
DEBUG, environment, 95, 153, 157
debug, system keyword, 82
debug=, system keyword, 9, 10, 95,

153, 157
defv, string, 64
diagnostics, N-body, 27, 167
dimension, item, 68
dlopen, 146
doc �le, miriad, 95
doc, �les, 144
documentation, latex �le, 143
documentation, manual pages, 144
Doppler velocity, 4
dprintf(3), 82
dynamic loader, dlopen, 146
dynamic loader, loadobj, 18, 146

EDITOR, environment, 103, 157
emissivity, 38
environment variables, 9, 157
error(3), 66, 69, 82, 153
ERROR, environment, 153, 157
error, fatal, 7
error, system keyword, 82
error=, system keyword, 9, 95
ETA-10, 117
export, full, 147
export, partial, 148
extragalactic, observing, 38

falcON, 67
FALSE, 63
�lestruct, old, 172
�lestruct,blocked I/O, 72
�lestruct,random I/O, 72
�lestruct.h, 68

FITS, 4, 161
�ts(5), 22
FITS, ccd�ts, 56
FITS, data conversion, 53
FITS, table �les, 53
FITS,AIPS, 56
FITS,GIPSY, 56
FITTP, AIPS, 56
FLOAT-OPTION, environment, 157
fmt, �les, 144
foreach, csh, 109
FORLIBS, environment, 82
fortran, 47
fortran, calling C, 81
FORTRAN, programming in, 80
ftoc, 81
ftp, 54, 139

galactic, observing, 39
gcc, 167
get_data, 70
get_history, 74
get_set, 71
get_string, 70
get_tag_ok, 71
get_tes, 71
getargv0, program name, 66
getparam, 9, 16
getparam.h, 64
getXparam, parsing, 65
getXrange, parsing, 66
GIPSY, xxiii, 161
GIPSY, FITS, 56
gmake, GNU, 79
gman, xx, 11
gnu, cc, 167
gnu, cc compiler, 141
gnu, make, 167
goal, NEMO, 138
goto, csh, 110
Gould, 145
grace, 22
GRAVSIM, 79
gravsim, 117
gridding, snapshots, 40
gridding,snapshots, 38

INDEX 177

gridding,tables, 45
GSL, 135
gzip, 139

hackcode1(1), 5, 27, 117, 155
hackcode3, 170
headline, 16
Heggie D., 26
hello.c, 79
help, -string in keywords, 64
HELP, environment, 94, 157
help, inline, 15, 94
help, keywords, 64
help, miriad, 101
help, online, 15
help=, system keyword, 9, 94, 157
Hernquist L., xxiii, 117, 172
hisf, 161
hisf(1), 16
history, 16
history, data, 161
HISTORY, environment, 16, 157
history.h, 74
host=, system keyword, 95
HOSTTYPE, environment, 91, 157
HP, 119
html, manual pages, xx, 11
Hurd L., xxiii
Hut P, 26
Hut P., xxiii, 27, 117, 172

IAS, 173
IEEE, 53
IEEE, �oating, 164
image(5), 22
image, data group, 3
IMLOD,AIPS, 55
import, tar image, 139
IMSL, emulated, 146
inc, �les, 144
INCLUDE, environment, 158
include, keyword �le, 93
include, keyword include, 8
include, reference include, 8
index, programs, xix
inipotential, 48

initparam, 64
inline, help, 64, 94
install, make�le, 140
interrupt, a NEMO program, 6
interrupting a program, 10, 98
intro(1), 25
iproc, 63
IRAF, startup, 56
item, 68

Keitao, xvii
keyword include, 8
keywords, modifying, 66
keywords, order of, 8
keywords, program, 5, 14, 64, 93, 161
keywords, system, 8�10, 93
Khoros, 11
King, models, 25

label, csh, 110
lastexit, 99, 105
LaTeX, 143
ldso, 169
libnemo, 16
LIBRARY, environment, 158
linked, manual �les, 144
linking, NEMO programs, 75
loadobj, 18, 28, 46, 154, 169, 170
loadobj, installation, 146, 169
local, 63
lpath, environment, 156
Lupton R., 97

macro �les, 37
make, GNU, 79
make, script, 141
make�le, install, 140
make�le, NEMO rules, 77
makeindex, 143
makepath, 31
Makino J., 117
man, 11
man, gman, 11
man, html format, 11
man, manual pages, 15
man, tkman, 11

178 INDEX

man, xman, 11
manlaser, xx, 142, 144
MANPATH, environment, 156, 158
manual pages, html, xx
manual, inline, 94
manual, online, 76
manybody, xxi
mathematica, tables, 33
Mathieu R., 26
MAX, 63
McMillan S, 26
memory, large, 34
Merritt - see Osipkov, 25
meta, shell characters, 8, 26
MIN, 63
MIPS COFF, 167
MIRBIN, environment, 105
MIRDEF, environment, 105
miriad, xxiii, 11, 95, 161
miriad, dataformat, 165
miriad, front-end, 99
MIRPAGER, environment, 105
MIRPDOC, environment, 105
mirtool, 11, 95, 155
mknemo, 142, 144
mknemo, script, 76
mkommod(1), 26
mkpdoc, 142
mkplummer, 68
mkplummer(1), 14
mktool, 95
Monger P., 97
mongo, xx, 22, 44
movie, 30
movie,3D, 31
Multi�ow, 117, 146

nbody0, 119
nds9, 21
nemo, directory structure, 113
NEMO, environment, 62, 91, 138, 139,

158
NEMO, the name, xvii
NEMO, the name, another origin, 61
nemo,shell, 170
NEMO.LOG, 150

nemo.rc, �le, 92
nemo_main, 65, 79, 80
NEMOBIN, environment, 62, 92, 158
NEMODEF, environment, 158
NEMODOC, environment, 158
NEMOHOST, environment, 62, 91
nemoinpX, parsing, 66
NEMOLIB, environment, 158
NEMOLOG, environment, 158
nemoman, xx
NEMOOBJ, environment, 158
NEMOPATH, environment, 91, 158
NEMORC, .local �le, 164
NEMORC, �le, 62, 92
NEMORC.local, 146
NEMORC.local, �le, 140
nemoshow, 170
NEMOSITE, environment, 140, 158
newline, help, 64
Newton I., 117
NGC, 6503, 43
nmlist, 142
NULL, 63
Numerical Recipes, xxiii, 73, 146

octal, 15
omen, 92
orbit, 18
orbits, data group, 3
Osipkov-Merritt, models, 25

PAGER, environment, 105
parseargs, 110
parsing, getXparam, 65
parsing, getXrange, 66
parsing, nemoinpX, 66
PATH, environment, 92, 139, 158
permanent, 63
pgplot, xx, 22
PI, 63
Pierson T., 96
pipe, limiting lines, 17
pipes, 15, 54
Plummer, mathematica table, 33
Plummer, model, 14, 25
plummer, model, 110

INDEX 179

position-velocity maps, 38
POSIX.1, 62
potential, 47, 48
potential descriptor, 18
potential, bar83.c, 121
potential, bulge1.c, 121
potential, ccd.c, 122
potential, cp80.c, 122
potential, ctex, 169
potential, dehnen.c, 123
potential, dublinz.c, 123
potential, expdisk.c, 123
potential, �atz.c, 124
potential, grow_plum.c, 124
potential, grow_plum2.c, 124
potential, halo.c, 124
potential, harmonic.c, 124
potential, hernquist.c, 124
potential, hom.c, 125
potential, hubble.c, 125
potential, isochrone.c, 126
potential, ja�e.c, 126
potential, kuzmindisk.c, 125
potential, log.c, 126
potential, mestel.c, 126
potential, miyamoto.c, 126
potential, nfw.c, 127
potential, null.c, 127
potential, op73.c, 127
potential, plummer.c, 127
potential, plummer2.c, 128
potential, plummer4.c, 129
potential, polynomial.c, 131
potential, rh84.c, 128
potential, rotcur.c, 128
potential, rotcur0.c, 128
potential, teusan85.c, 128
potential, tidaldisk.c, 129
potential, triax.c, 129
potential, two�xed.c, 129
potential, vertdisk.c, 129
potential, wada94.c, 131
potential, zero.c, 131
potlist(1), 18
POTPATH, environment, 18, 158
Press W., 73

PrintMan, 144
proc, 63
program keywords, 5, 64, 93, 161
program name, getargv0, 66
programming, bugs, 159
programs(8), 25
put_data(), 69
put_history, 74
put_set, 71
put_string, 69
put_tes, 71

quotes, 8

radprof(1), 17
random access, 72, 170
ranlib, 142
raster�le, 31
readline, GNU, 74
real, 63, 70, 165
realptr, 63
redir, 17
redirection, 17
reference include, 8
remote execution, 95
REVIEW, 6, 10, 98
REVIEW, environment, 158
Richstone D., 119
rms, units, 26
rmsf, 142
Roberts E., xxiii
Ross M., xxiii
rproc, 63
rsf(1), 13, 54

scatterdiagram, image, 45
scratch �les, 69
seed=, keyword, 136
set, 68
set,csh, 109
setparam, 66
SGN, 63
shared libraries, 167
shell script, 107
SHELL, environment, 140
shell, script, 17

180 INDEX

shortcut, [key=]value, 8
signal(2), 98
Skordis P., xxiii
sm, 22, 44
smoothing, image, 38
snap3dv, 32
snapccd(1), 38
snapcenter, 16, 33
snapdiagplot(1), 27
snapgrid, 34
snapgrid(1), 38
snapmradii, 33
snapplot, 7
snapplot(1), 27
snapplot, families, 21
snapplot,movie, 30
snaprect, 16
snaprotate(1), 39
snapscale(1), 26
snapshot, 14
snapshot, data group, 3
snapshot.h, 73
snapspin(1), 39
snapsplit, 34
snapstack(1), 26
snapxyz, 32
spawn, 101
startup �le, nemo.rc, 92
startup �le, NEMORC, 92
stderr, 7, 9, 17
stdinc.h, 62
stdout, 17
story, in snapshot, 170
Strasbourg, xxi
strclose, 69
stream, 63, 68
string, 63
stropen, 68
structured �le, 68
structured �les, pipes, 54
submit, 142
SUN, 31, 53
Sun, 117, 145
system keywords, 8, 93

tabgrid(1), 45

tabhist(1), 17
table, data group, 4
table, �les, 17, 44
table, to snapshot, 54
tablsq�t(1), 17
tabmath, 33, 54
tabmath(1), 17
tabmath(1),awk, 45
tabplot(1), 44
tag, item, 68
tar, export, 148
tar, import, 139
tardot, 142
tcsh, shell, 11
Teuben P., xvii, xxiii, 117
texinfo, xxi
tkman, xx, 11
Tonry J., 96
tpipe, 17
TREECODE, 119
Tremaine S., 119
trigger, cpp, 147
tro�, 144
TRUE, 63
tsf, 14, 70
tsf(1), 13, 16, 27, 53
type, item, 68

Ultrix, 158
unbind, 159
uncompress, 139
Unicos, 53, 146
units, rms, 26
units, virial, 26
Usage, 150
usage, string, 64
USAGELOG, 150
user interface, getparam, 16

VAX, 145
vectmath.h, 72
version, user interface, 94
virial, units, 26
VMS, 53

w�ts, IRAF, 56

INDEX 181

Wisnovski P., 117

xgobi, 22, 32
xgraphic, 22
xman, 11
xyzview, 32

yapp, xx, 21, 28
yapp, default install, 169
YAPP, environment, 22, 96, 159
yapp, installation, 145
yapp, mongo, 96
yapp, pgplot, 96
yapp, sm, 97
yapp, system keyword, 159
yapp,sunview, 96
yapp=, system keyword, 9, 22, 96
YAPPLIB, environment, 75, 146, 159,

164

zcat, 54, 139
ZENO, 64, 173

