
Distances and Angular Sizes

We may rearrange the relation that appeared in Lecture 1 between apparent magnitude m and absolute magnitude M at some wavelength (or in some wavelength band), and distance d, as follows:

$$m - M = 5 \log (d / 10 pc)$$

The quantity (m - M) is called the distance modulus. Some databases include (m - M), or d, or in some cases (e.g., **NED**) (m - M) and d.

in the small angle approximation (r < d) is simply $\vartheta = r/d$, for ϑ in radians, and r and d in identical units. Since 1 radian = 57.296 degrees = 3,437.8 arcminutes (= 206,265 arcseconds),

$$r = \vartheta d/3437.8$$
,

where ϑ is measured in arcminutes. On extragalactic scales, d is often expressed in Megaparsecs (Mpc); 1 Mpc=10⁶ pc.