Homework Assignment
Statistics, Source Detection, and Noise at High Energies

Due: 3:30 PM, Wednesday, October 13

For any of the questions involving calculations, you should show the details of these calculations. You
will be graded not only on the answers that you provide, but on demonstration of the steps and reasoning
involved in deriving those answers.

1. In Lab 5, you derived a number of statistical quantities from the background and source sub-regions of the
Chandra Deep Field. Record these values in the table below.

Number of Mean counts Fraction of pixels | Fraction of pixels
pixels per pixel with >0 counts with >4 counts
Background Region 65536 0.102 0.0967 (0.0970) | 0 (8.45e-8)
Source Region 262144 0.269 0.219 (0.236) 0.00114 (9.38e-6)

In the third and fourth columns, include the expected fractions based on the Poisson distribution in

parentheses.

2. Estimate the mean background B, and its standard deviation o, in IDL using the binned background FITS

image, back_img_binned.fits. Because this region has an effective exposure time that is about half that in the
source region, multiply these numbers by a factor of two. Choose an intensity threshold based on these values

corresponding to N=10 standard deviations above the background. Record these values below.

Using IDL, construct a histogram (not normalized) for the binned source image source_img_binned.fits.
Based the histogram, how many sources, Nsources, are there above the threshold? (You may need to examine
the histogram multiple times, focusing on different ranges.) Record this value, as well.

Background, B

Standard Deviation, og

Threshold, B+Nog

Nsources > Threshold

Detection
parameters

12.95

5.35

66.5

22

Calculate the signal-to-noise ratio for three sources - one well above the threshold, one close to the threshold,

and one in-between.

Total Counts Background Source Counts SNR

Counts
Bright Source 458 12.95 445 20.5
Faint Source 74 12.95 61 6.5
Intermediate Source 121 12.95 108 9.3




3. Write an IDL procedure that (a) reads a FITS image, (b) constructs a histogram and normalizes it to the
number of array elements, and (c) creates a postscript file of the histogram. Set the range of pixel values in
the plot (xrange) equal to the minimum and maximum values of the image, where these are determined
within the procedure. Compile the program in IDL using .run, apply it to cdfn_back_img_binned.fits, and
attach hardcopies of the program and postscript file to your homework.

A minimum procedure should, schematically, look something like this:

pro basic, fitsfile

image = readfits(fitsfile,hdr)

imhist=histogram(image, binsize=1, locations=hbins, /nan)
npixels_image=n_elements(image)
imhist_norm=imhist/float(npixels_image)
max_image=max(image)

min_image=min(image)

print, npixels_image, max_image, min_image

set_plot, 'ps’

device, filename="histogram.ps', /landscape

plot, hbins, imhist_norm, psym=10, xrange=[min_image,max_image]
device, /close

set_plot, 'x’'

end

0.20 T —T —T T T T T T T

[*SE1

0.10/

0.05/

L L L L N L L AL BN B
I

000k o o o0 e

o
-
s
=

20



Comments

1. In this first question, some students mistakenly calculated the fraction of pixels with 4 or more
counts, as opposed to more than 4 counts. As one might expect, the background region statistics are
consistent with the Poisson distribution, while the source region has an excess of pixels with, e.g., >4
counts.

2. Asis the case in several other places in this assignment, it is difficult and tedious to accurately count
the number of sources above the threshold by examining the histogram. For that reason there was
little, if any, penalty for being a little inaccurate. However, note that one can do all of the calculations
quickly and precisely using IDL, with its power in manipulating arrays. The solutions above were
generated with the following procedure:

pro solutions

image_back = readfits("cdfn_back_img.fits",bkghdr)

print, 'mean in background region’, mean(image_back)

print, '# of backgound pixels',n_elements(image_back)

image_source = readfits("cdfn_source_img.fits",srchdr)

print, '# of sources pixels', n_elements(image_source)

print, 'mean in source region', mean(image_source)
hist_back=histogram(image_back, binsize=1, locations=bins_back, /nan)
hist_back_norm=hist_back/float(n_elements(image_back))
hist_source=histogram(image_source, binsize=1, locations=bins_source, /nan)
hist_source_norm=hist_source/float(n_elements(image_source))

; The fraction with >0 cts is 1 minus the number with 0 counts:

print, 'fraction of bgd pixels with >0 cts', 1.0-hist_back_norm(0)

print, 'fraction of src pixels with >0 cts', 1.0-hist_source_norm(0)

; The fraction with >4 cts is 1 minus the sum total of elements in the subarray constructed out of the
; first 5 entries in the histogram (that are the fractions with 0,1,2,3, and 4 counts):
farr=indgen(5)

print, 'fraction of bgd pixels with >4 cts', 1.0-total(hist_back_norm[farr])

print, 'fraction of src pixels with >4 cts’, 1.0-total(hist_source_norm|farr])
image_back_binned = readfits("cdfn_back_binned_img.fits",bkghdr)
true_back=2.0*mean(image_back_binned)

print, 'bgd mean and stand. dev.', true_back,2.0*(stddev(image_back_binned))
threshold=2.0*(mean(image_back_binned)+10.0*stddev(image_back_binned))
print, 'threshold’, threshold

image_source_binned = readfits("cdfn_source_binned_img.fits",srchdr)
hist_source=histogram(image_source_binned, binsize=1, locations=bins_source, /nan)
; identify the indices of the image array above the threshold:
index=where(image_source_binned gt threshold)

; construct the subarry of pixels above the threshold:
sources=image_source_binned(index)

print, '# of sources above threshold', n_elements(sources)

; print out the sources above threshold, and identify a bright, a faint, and an intermediate source:
print, sources

index_bright=5

index_faint=0

index_interm=7

total_bright=sources(index_bright)

total_faint=sources(index_faint)

total_interm=sources(index_interm)

source_bright=total_bright-true_back



source_faint=total_faint-true_back

source_interm=total_interm-true_back

print, 'background cts:', true_back

print, 'total cts: bright, faint, intermediate’, total_bright,total_faint,total_interm
print,'source cts: bright, faint, intermediate’, source_bright,source_faint,source_interm
; make three vectors for source, background, total to calculate all SNR at once:
my_sources_source_array=[source_bright,source_faint,source_interm]
my_sources_back_array=[true_back,true_back,true_back]
my_sources_total_array=float([total_bright,total_faint,total_interm])
my_sources_snr_array=my_sources_source_array/sqrt(my_sources_back_array+my_sources_total_array)
print,'SNR: bright, faint, intermediate’,my_sources_snr_array

end



