Angular Resolution

ASTR 288C: Lecture 6

Naked Eye

Astronomical "Instruments"

Typical size: 3-9 mm diameter pupil extremely portable subject to blinking cheap <u>Best for bright larger</u>

Naked Eye

Astronomical "Instruments"

Typical size: 3-9 mm diameter pupilextremely portablesubject to blinkingcheapBest for bright, large-field observing

Refracting Telescopes

Largest: Yerkes 102-cm (40-in) diameter lens Typical amateur: 60-mm diameter lens

little maintenance reliable best image quality expensive per aperture size heavy and bulky – size limit

Best for solar system observing

Naked Eye

Astronomical "Instruments"

Typical size: 3-9 mm diameter pupilextremely portablesubject to blinkingcheapBest for bright, large-field observing

Refracting Telescopes

Largest: Yerkes 102-cm (40-in) diameter lens Typical amateur: 60-mm diameter lens

little maintenance reliable best image quality expensive per aperture size heavy and bulky – size limit est for solar system observin

Reflecting Telescopes

Largest single-mirror: Subaru & VLT 8.2-m diameter mirror Largest segmented-mirror: GTC 10.4-m diameter "mirror"

cheaper per aperture size good image quality lighter – larger sizes

e slight light loss maintenance required est for (extra-)galactic observin

Diffraction and Angular Resolution

Airy Pattern

Diffraction and Angular Resolution

Airy Pattern

Rayleigh's Criterion

Two "point" (unresolved) sources are resolved from each other when separated by at least the radius of the airy disk.

Diffraction and Angular Resolution

Airy Pattern

Rayleigh's Criterion

Two "point" (unresolved) sources are resolved from each other when separated by at least the radius of the airy disk.

$$\Theta = 1.22 \frac{\lambda}{D}$$
 rad

Careful! λ and D are naturally measured in different units

Also note: 360 deg = 2π rad

Pupil diameter:

3-4 mm (day) 5-9 mm (night)

Pupil diameter: 3-4 mm (day) 5-9 mm (night)

Pupil diameter: 3-4 mm (day) 5-9 mm (night)

$$\Theta = 1.22 \frac{\lambda}{D} \text{ rad} = 1.22 \frac{0.55 \,\mu\text{m}}{3 \,\text{mm}} \text{ rad} \frac{180 \,\text{deg}}{\pi \,\text{rad}} \frac{1 \,\text{mm}}{10^3 \,\mu\text{m}}$$
$$= 0.0128 \,\text{deg} \frac{3600''}{1 \,\text{deg}}$$
$$= 50'' \,(\text{day})$$

Moon 3 mm pupil

