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Abstract. We reconsider the apparent conflict of conservation laws in cyclotron radiation 
discovered by Lieu et al (1983). We show that they did not correctly include the effects 
of radiation reaction in their calculation. When a ‘recoil’ term, calculated using relativistic 
quantum theory, is included in the angular momentum of the particle the conflict disappears. 
We find that the guiding centre of the particle drifts outwards during cyclotron radiation. 

Recently several letters have been published on the subject of an apparent conflict of 
conservation laws in cyclotron emission (Lieu et a1 1983, hereafter referred to as LLE; 
Lieu er a1 1984, Lieu 1984), and on the resolution of this conflict (DasGupta 1984). 
The conflict arose in comparing two calculations of (d/dt)ri  (here r i  is the square of 
the distance of the centre of gyration of a particle orbit from the z axis of the coordinate 
system, with the magnetic field parallel to the z axis), using conservation of angular 
momentum and conservation of linear momentum respectively. In this letter we 
reconsider the calculation which uses the law of conservation of angular momentum. 
LLE use it to find the angular momentum of the electron by first calculating the angular 
momentum of the radiation field. Here we calculate the angular momentum of the 
electron directly from its wavefunction. We discuss the emission process from two 
viewpoints: firstly, when a single measurement of the state of the system is made; and 
secondly, when the expectation value of the angular momentum is measured. In the 
latter case we include a ‘recoil’ term, calculated from relativistic quantum theory. This 
term was omitted by LLE: we show that it leads to a value for (d/dt)r: which agrees 
with that obtained using the law of Conservation of linear momentum. This resolves 
the conflict. Our result differs from that given by DasGupta (1984). We believe that 
he erred in failing to carefully distinguish between the expectation value of a product 
and the product of expectation values. 

The system consisting of a particle in a homogeneous magnetic field, in the absence 
of radiation, may be described by a set of basis states Insp,) (cylindrical gauge; Melrose 
and Parle 1983a). These states are characterised by the principle quantum number n 
(which determines the energy associated with motion perpendicular to the magnetic 
field), the component of momentum parallel to the magnetic field, pz, and the quantum 
number s which determines the radial position of the guiding centre: 

?:Imp,)= (2s+ l)(h/eB)lnsp,). ( 1 )  
The operator for the z, component of the angular momentum of the particle (assumed 
to be an electron) is J :  =;Ma( ?: - ?:), where ?: is the operator for the square of the 
radius of gyration and R = eB/M is the gyrofrequency. Note that ?: and ?: are 
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operators, and may only be replaced by the corresponding eigenvalues, r i =  
( 2 s +  l)h/eB and r :=2nh/eB,  when the electron is in a pure basis state lnsp,). LLE 
fail to make this distinction: we believe it to be important in order to avoid confusion. 
The eigenvalues of JZ in relativistic theory are given by 

.f‘,lnsp,)= ( n  - s -4)hlnspz) ,  (2) 

where all dependence on spin is contained in the quantum number n. 
Consider emission by a single electron of a single photon of momentum hk. Suppose 

that initially the state of the particle is described by a pure basis state Insp,). A 
relativistic calculation, which includes the magnetic field exactly (Melrose and Parle 
1983b), shows that, as in the usual perturbation theory, the wavefunction of the electron 
after emission of the photon is described by a mixture of basis states with all values 
of s. If the harmonic number of emission, m (or equivalently, in non-relativistic theory, 
the energy of the photon, mhR), is known then the principal quantum number of the 
final state n‘ = n - m is determined. The wavefunction still contains a mixture of states 
with different values of the radial quantum number. Suppose we measure this, and it 
takes the value s’. Then we argue that the wavefunction of the electron collapses to 
the pure basis state In’s’p:) due to the measuring process, and the angular momentum 
of the final state is given by. 

.f‘,ln’s’p:) = (n’- s ’ - f )h ln’s ’p: ) .  

Using conservation of angular momentum one argues that the angular momentum 
carried off by the photon is given by 

J :  = ( n  - n’ - s + s’)h. (3) 

(Note that until one measures s’ the angular momentum of the photon is not well 
defined. However the results of the investigation of Bell’s theorem guarantee that a 
measurement of s’ immediately fixes J : ;  e.g. see Clauser and Shimony 1978). 

LLE use a classical expression for the vector potential of the radiation in order to 
calculate J: .  The classical limit corresponds to the emission of a large number of 
photons. Suppose that we measure the eigenvalues of the operators ?: and f i  after 
the emission of N photons, and the quantum numbers are found to be nr and sF Then 
the angular momentum carried off by the radiation is 

J :  = ( n - nr - s + s,-)h. (4) 

( 5 )  

This may be written 

J :  = E ‘/a+ (sf- s ) h ,  

where E ’ = ( n  - nr)hR in the notation of LLE; in the non-relativistic limit E Y  is the 
energy carried away by the radiation. The result used by LLE is 

J :  = E ’/a. ( 6 )  

Equations (5) and ( 6 )  are compatible only if s = s,-. This was also noted in Lieu (1984), 
who believed ( 6 )  to be correct. We argue that the calculation of (6) assumes implicitly 
that s = sf, in that it uses a vector potential calculated on the assumption that the 
particle orbit (and hence s) does not change with time. We believe ( 6 )  to be incorrect: 
we now show that the true result is compatible with sF> s in ( 5 ) .  

We again consider the emission of N photons by a single electron, but calculate 
the expectation value of the angular momentum of the radiation field, rather than the 
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eigenvalue. This corresponds to measuring s’ for a large number of single-electron 
systems and averaging the results. The expectation value may be calculated using the 
methods described in Melrose and Parle (1983b). For emission of a single photon f ik  
by a particle initially in the pure state lnsp,), one finds that if the principal quantum 
number is known to be n’ (but the radial quantum number is undetermined) the 
expectation value for the angular momentum of the final state of the electron is (Parle 
1985) 

( j z ) = ( ( n ’ - s - f - f i k : / 2 e B ) f i ,  (7) 

where k ,  is the component of k perpendicular to the magnetic field. The k,-term in 
(7), which was omitted by LLE, is a recoil term which may be attributed to radiation 
reaction. It arises from the fact that the expectation value for s in the final state 
exceeds the quantum number of the initial state, cf ( 2 ) .  For emission of N photons 
whose wavevectors k,, i = 1,.  . . , N, are measured, the final state of the particle only 
depends on the total perpendicular momentum it has lost, and one replaces k,  in (7) 
with the sum of the perpendicular components of the wavevectors (Parle 1984): 

&)= [ n f - s - ~ - - (  1 h  2 k , , ) 2 ] f i .  
2eB i = l  

Now using j :  = ! M a ( ; :  - ;:) and 

2 d  
dt  M a 2  dt  
- ( r , ) =  d A2 -- - - E Y ,  

we find that 
2 d 1 d N  

-(%)=y ( M a )  -( dt  i = l  f i k L i )  . d t  

(9) 

The sum on the right-hand side of (10) changes with time as successive photons are 
emitted ( N  changes). Since in writing down (10) we assume that the wavevectors of 
all emitted photons are measured, the sum X;fl, fik,, may be interpreted as tke 
eigenvalue P, of the perpendicular momentum operator for the radiation field, P, 
(LLE call this P), after the emission of N photons. Then (10) may be written 

d 1 d  
d t  ( M a ) ’  dt  
-(;;)=- -p : .  

This is essentially identical to the result found by LLE using conservation of linear 
momentum (their equation (10)). Unfortunately LLE’S notation is confusing, in that 
they do not distinguish between operators and the corresponding expectation values: 
effectively they write P, = Py = 0, but P: = P: + P; > 0, where P, and Py denote both 
operators and expectation values for the x and y components respectively of the total 
momentum of the radiation field.) Note that if the law of conservation of angular 
momentum is applied to (8) one finds that the angular momentum carried away by 
the radiation field is 

J : =  EY/Cl+P:/2MS1.  (12) 
This differs from the result (6) used by LLE, and explains why their calculation using 
angular momentum provided a different result from ( 1  1). 

In practice one does not measure the wavevectors of all cyclotron photons, and so 
the specific form of (10) is not useful. The appropriate procedure is to replace (Z? kii)’ 
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by its expectation value, measured by examining a large number of systems consisting 
of N cyclotron photons (this radiation expectation value is therefore different from 
the expectation value applying to electron operators, and we denote it by '( ),,'). The 
expectation value may be calculated by assuming that the wavevectors are distributed 
according to the cyclotron radiation pattern. We write 

k L i  = ki sin &(cos 4i, sin c&, 0), (13) 

and assume that the angles 4i are randomly distributed in the interval [0,27r] (azimuthal 
symmetry), while the angle Oi are distributed according to the energy flux j ( q  0) used 
by LLE (suitably normalised). As N varies the sum Z y  kLi exhibits the properties of 
a random walk in two dimensions, and the expectation values may be calculated 
accordingly (Reif 1965). We find that 

as expected from azimuthal symmetry, while 

((? i = l  k L i ) l )  y =( i = l  f k:i) Y I 

The last result follows from 
N N  N N  (1 1 k l i .  kLj) = ( E  E kikj sin Bi sin 6,  COS(^^- c#J~) 

i = l  j#i y i = l  j#i 

since the angle rPj - 4i is randomly distributed. Therefore we conclude that the time 
evolution of rg when a large number of photons are emitted (the most likely case of 
interest) is described by the equation 

-(;;)=-- d 1 
d t  

The calculation of the right-hand side of (17) is discussed in the appendix of LLE. 
(Note that LLE derive (1 1) in the body of their text, but calculate (17) in their appendix, 
without discussing the difference between the two equations. The discussion given 
here makes explicit the unstated assumptions underlying their calculation.) 

Finally we comment on the work of DasGupta (1984). He reanalysed the calculation 
of (d/dt)r i  using conservation of linear momentum, and found that (d/dt)r;= 0. His 
argument is that 

dP:/dt = 2Px dP,/dt+2Py dPy/dt =0,  

(d/dt)(P:), = 2(PX dPX/dt), +2(P, dPy/dt), 

(18) 

(19) 
and that (P, dP,/dt), =(Py dPY/dt), # 0. Essentially this error may be attributed to 
the confusion in the meanings of P:, P, and Py referred to earlier. The discussion 
given here makes the interpretation of P: clear. 

In summary, we find that the guiding centre of a particle drifts outwards from the 
centre of symmetry (the z axis). We note that in the classical limit a particle is described 
by a sum of states which typically have large n but small s. When the electron is 
described by a pure basis state Insp,), with n > s, its wavefunction is essentially confined 

since (dP,/dt), = (dPY/dt), = 0. However we believe that (18) should be written 
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to an annulus of mean radius ( 2 n t 1 l e B ) ” ~  from the z axis, with thickness (6sh/eB)’” 
(Parle 1984). The effect of the outward drift of the centre of gyration from the centre 
of symmetry (increase in s )  appears as a radial spreading of the wavefunction (i.e. a 
thickening of the annulus), while the mean radius of the annulus diminishes as n 
decreases due to energy loss. 
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