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ABSTRACT

We describe the process by which single dish aperture efficiency measurements are carried
out for the antennas of the CARMA array. The basis for the measurements is explained and the
practical details are described. Related topics such as the approximations used at CARMA to
calculate atmospheric opacity from weather data, the analysis of sky dips to actually measure
atmospheric opacity, the model for lunar brightness temperature and effective primary beam
sizes are also discussed.
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1. Introduction

The aperture efficiency of an antenna is simply the ratio of the effective collecting area (in terms of collected
power that gets into the receiver feed horn) to the physical collecting area. An ideal antenna would have
100% efficiency. However, numerous factors can absorb the incident radiation or scatter it out of the beam
path, e.g.,

• blockage of the dish surface by the subreflector and the support legs;

• gaps between the individual panels that typically make up the reflecting surface of millimeter dishes,
and poor reflection from the heads of the screws used to mount the panels;

• deviation of the dish shape from a parabola such that the incident radiation is not all collected at
the focus (spillover, taper). This property often changes with dish elevation as the orientation of
gravitational forces relative to the support structure changes and the dish deforms;

• imperfect illumination of the subreflector and then the feed horn by the aperture. In order to reduce
spillover the illumination pattern is often deliberately tapered at the edge of the aperture. This and
any unintentional imperfections in the illumination pattern will reduce aperture efficiency;

• diffraction at the edge of the subreflector;

• incorrect focus position (either lateral or axial) for the subreflector; and

• imperfect reflection due to roughness on the dish surface (referred to as “Ruze loss”).

A thorough description of the elements that control aperture efficiency for reflecting antennas is given by
Baars (2003). All these effects can each contribute losses of several percent in efficiency, and since they
combine in series (i.e., geometrically), they can add up to tens of percent loss in efficiency compared to an
ideal antenna. Lugten (1995) discusses the efficiency of the BIMA 6.1m antennas: estimates of the above
effects lead to a theoretical estimate of 75% for the main beam aperture efficiency, and measurements at Hat
Creek were consistent with this result. This is regarded as good for a millimeter–wavelength telescope.

There are several ways to measure the aperture efficiency. Here we discuss the use of single–dish total power
measurements (a separate memo discusses interferometric measurements at CARMA). The discussion is
written from a non–expert’s point of view, based on a number of sources, including the basic paper on
calibration by Ulich & Haas (1976), the NRAO 12m telescope manual (Folkers 2004), the HIFI/Herschel
calibration document (Kramer 2005), ALMA calibration documents (Mangum 2002; Moreno & Guilloteau
2002), and Dave Woody’s CARMA calibration memo (Woody 2006).

2. Single–dish aperture efficiency measurements: Theory

The aperture efficiency of a dish may be determined from measurements of the power in the receiver when
illuminated by three different targets: blank sky, a bright planet, and an ambient-temperature load. A source
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such as a planet or a maser typically only fills a small fraction of the telescope beam, and thus is appropriate
to measure the “main–beam” aperture efficiency ε relevant to interferometer observations.

We will discuss single–dish power measurements along the lines of the framework used in the CARMA
memo on Tsys calculation (Woody 2006). First consider the contributions to the receiver power when the
telescope points at blank sky. The power measured at the receiver is the product of a gain G (e.g., in units
of dB per Kelvin) with the following temperature contributions:

• The intrinsic thermal noise of the receiver, Trec.

• The thermal emission of the optically thin atmosphere above the telescope: we represent the atmo-
sphere by a single temperature Tatm and an opacity τ (which, for a given telescope elevation El,
is the zenith opacity τ0 times the “air mass” 1/sin(El)), so that the atmospheric contribution is
Tatm (1− e−τ).

• Above the atmosphere, the sky is filled by the cosmic microwave background (CMB). This must pass
through the atmosphere and hence is attenuated by a factor e−τ when it reaches the telescope.

• The subreflector support legs and any illumination into the feed from optical paths that do not reflect
from the dish, such as beyond the edges of the dish (“rear spillover”) or the edge of the subreflector
(“forward spillover”), contribute to the measured power.

Although we use temperatures in the formulae presented here, in each case the relevant value to use is the
Rayleigh–Jeans curve equivalent contribution, J(ν,T ) = (hν/kB)/(exp(hν/kBT )− 1). For example, the
temperature of the CMB is 2.73 K, but the temperature we need at millimeter wavelengths, TCMB, is the
Rayleigh–Jeans curve equivalent J(ν,2.73) ≈ 1 K at 3 mm wavelength. In the 3 mm window J(T ) ≈ T −2
to quite a good approximation above a few K, and J(T ) ≈ T − 5 in the 1.3 mm window, so the difference
between T and J(T ) is negligible except for the CMB.

The expression for the power measured on the sky is thus

Psky = G{Trec + (1− e−τ)ηTatm + (1 − η)Tspill + e−τηTCMB} (1)

Here η is a “coupling efficiency” that is distinct from the aperture efficiency appropriate to compact cosmic
radio sources that we seek to measure. The distinction between different forms of efficiency can be very
confusing: Mangum (2002) lists no less than 7 separate types of “telescope efficiency” in his Appendix D.
Here η is the efficiency appropriate for the coupling of a source that completely fills the forward hemisphere
of the dish with a uniform temperature. In this situation the receiver is effectively enclosed in a black
body cavity at the corresponding temperature, and the focussing properties of the aperture have little effect
on the temperature seen by the receiver. The only decrements to this efficiency are the small effects of rear
spillover, blockage and ohmic losses. The 12m Telescope Manual (Folkers 2004) calls η the “warm spillover
efficiency”, Serabyn et al. (1998) refer to it as the “coupling efficiency” and Plambeck (2000) describes it as
the “spillover efficiency”. This efficiency is typically close to unity.
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It is common in calibration documents to use the same base symbol η, suitably subscripted, to refer to all
forms of telescope efficiency. While experts have no difficulty in keeping track of the seven distinct forms
of η, the use of a single symbol tends to cause confusion for the non–expert. To minimize confusion here,
we will use different symbols. In this document η will always and only refer to the “spillover” or “coupling”
efficiency described above.

Since the CMB and the sky contribution both in effect fill the forward hemisphere of the dish, they are both
modified by η. The receiver noise, on the other hand, is intrinsic and thus not affected by the coupling
efficiency. Tspill is the effective temperature of the rear spillover and blockage effects, whose contribution
to the measured power is proportional to (1 − η) since it enters the feed through the portion of the aperture
that is not illuminated by the forward hemisphere. In most discussions of calibration (e.g., Kutner & Ulich
1981; Folkers 2004) Tspill is set equal to the ambient temperature since most of the contributions (ground,
subreflector support, etc.) are at that temperature.

As part of the calibration procedure millimeter telescopes generally use a “load” of known temperature that
can be placed in the beam path, either inside the cabin (6m dishes) or outside in the ambient air (10m dishes),
and the power measured on the load is compared with the corresponding power measurement on the sky.
The power measured on the ambient load is

Pload = G{Trec + Tload} (2)

where Tload is the (Rayeigh–Jeans equivalent of the) physical temperature of the load. The use of these power
measurements to determine the telescope calibration is reprised in Appendix 1. For clarity, in our discussion
we will ignore the distinction between the receiver sidebands: in general G and τ may be different in the
upper and lower sidebands and we have separate equations for both. However, the algebra is much clearer
if we ignore this distinction for the exposition.

For the aperture efficiency measurements we use (1), (2) and the power measured while pointing at a suitable
planet:

Psrc = G{Trec + (1− e−τ)ηTatm + (1 − η)Tspill + e−τ(εTsrc + ηTCMB)} (3)

where Tsrc is the temperature contribution of the target planet diluted over the entire area of the beam,
discussed further in the next section. The contribution of the planet is explicitly modified by the telescope
“main–beam” aperture efficiency ε as well as the atmospheric opacity. We explicitly assume in (3) that the
planet does not fill the primary beam and that the CMB still contributes to the power measured: if this is not
the case then one sets TCMB = 0 in (3).

For convenience, we now define an effective sky temperature contribution seen by the telescope,

Tsky = (1− e−τ)ηTatm + (1 − η)Tspill + e−τηTCMB (4)
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so that, by analogy with (2), we may write (1) as Psky = G{Trec + Tsky}. We use the common “Y” notation
for ratios of the power measurements, e.g.,

Yload =
Pload
Psky

(5)

We have not yet determined the receiver temperature, but from the ratio Yload = Pload/Psky (eqns. 1, 2) we
find

Trec =
Tload − Yload Tsky

Yload − 1 (6)

Substituting this expression into (1) and (3), with Ysrc = Psrc/Psky, we derive the following expression for
the aperture efficiency:

ε =
Ysrc − 1
Yload − 1

Tload − Tsky
e−τ Tsrc

=
Psrc − Psky
Pload − Psky

Tload − Tsky
Tsrc

eτ (7)

This expression can be simply interpreted as the ratio of the power contributed by the source, Psrc − Psky,
to the power expected from multiplying the telescope gain G = (Pload − Psky)/(Tload − Tsky) by the source
temperature contribution Tsrc, corrected for atmospheric absorption of the source with the factor eτ. The
aperture efficiency (7) may be evaluated using the 3 power measurements in (1)-(3) together with Tsrc, Tload
and a value for Tsky calculated from measured values of air temperature, pressure and humidity (obtained by
the CARMA weather station and available in the monitor data stream) as follows:

• The atmospheric opacity in the 1 mm band is provided by the tipper. No tipper is available at CARMA
for the 3 mm band: τ is generally calculated from the expression presented in a note by Dave Woody
(summarized in Appendix 2 below). The expression contains a slowly–varying term proportional to
the water vapor density, and a pressure- and temperature-dependent approximation to the 119 GHz
O2 line. The value of τ calculated in this way is used in the 3 mm Tsys calculation at CARMA. τ at 3
mm can also be measured with a sky dip (see Appendix 3). At the Cedar Flat site at 2000 m altitude,
the zenith opacity τ0 is typically of order 0.03–0.10 in the 3 mm window but 0.2–0.8 in the 1 mm
window.

• If Toutdoor is the outdoor air temperature near the ground, the effective temperature of the atmosphere
at the height of the main atmospheric absorption contribution, Tatm, is taken to be 0.94Toutdoor .

• We set η = 0.975. The value of Tspill is not well determined but is not critical here since it only
appears multiplied by 1 − η: we use the standard assumption that Tspill = Toutdoor .

• Tload is set equal to Toutdoor for the OVRO antennas where the absorbing load is outside the electronics
cabin, but potentially different for the BIMA antennas where the cal wheel is inside the temperature–
controlled cabin, i.e.,
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Tload =

{

Toutdoor for 10m dishes
Tcabin for 6m dishes

(8)

3. Planet temperature contributions

When the target is an extended source such as a planet, we can calculate its temperature contribution Tsrc by
diluting the planet disk temperature using the ratio of the area (in solid angle) of the source to the area of the
main beam. When the source is a point source, we convert its flux to a diluted temperature. At the present
time, planets are invariably modelled as an elliptical disk of constant brightness temperature for calibration
purposes, and we will assume circular disks for our discussion. For small sources we thus have

Tsrc =

{

Tplanet
Ωplanet

ΩA
Ωplanet � ΩA

c2

2kB f 2
S

1.133θ2
FWHM

point source of flux S
(9)

where Ωplanet is the solid angle occupied by the planet (πθ2
planet /4, where θplanet is the angular diameter

of the planet) and ΩA is the solid angle for a perfect antenna with an aperture of area πD2/4. f is the
observing frequency, kB is the Boltzmann constant and c is the speed of light. Let θFWHM be the ideal full–
width–at–half–maximum of the primary beam of the telescope. For the aperture efficiency measurements the
appropriate beam size corresponding to a perfect uniformly and fully illuminated aperture is θFWHM = λ/D,
as follows:

θFWHM =

{

59.5′′ (100/ fGHz) for the 10.4m dishes
101.4′′ (100/ fGHz) for the 6.1m dishes

(10)

In the case that θplanet is a significant fraction of θFWHM , we also have to take into account the telescope pri-
mary beam response (e.g., Stutzman & Ko 1974). This is modelled by a Gaussian of the form e−θ2/2σ2

with θFWHM = 2
√

2ln 2σ. The effective area of such a Gaussian beam pattern is πθ2
FWHM/4ln 2 =

1.133θ2
FWHM . Convolving the Gaussian beam with the planetary disk produces the result that

Tsrc = Tplanet (1 − e
− ln2

θ2
planet

θ2
FWHM ) (11)

Similarly, in the case of a point source, the equivalent sky temperature (9) averaged over the area of the
beam can be expressed numerically as

Tsrc = 1.22×106 SJy
f 2
GHzθ2

FWHM
(12)

with SJy the source flux in Janskies, fGHz the frequency in GHz and θFWHM measured in arcseconds.
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Note that in practice the illumination pattern of the antennas is generally tapered at the edges of the dish in
order to reduce spillover, and this increases the effective beam size relative to the “ideal” value used here for
aperture efficiency calculations. For interest, Appendix 4 presents measurements of the effective beam size
of the CARMA dishes.

Table 1: Single–dish aperture efficiency measurements on Jupiter at 95 GHz

Date/Array C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
080501/C 0.50 0.47 0.53 0.47 0.46 0.49 0.59 0.53 0.51 0.59 0.48 0.55 0.53 0.42 0.40
080531/C 0.45 0.42 0.46 0.44 0.39 0.42 0.52 0.58 0.57 0.61 0.52 0.51 0.52 0.51 0.57
080601/C 0.50 0.48 0.53 0.49 0.46 0.50 0.57 0.61 0.57 0.65 0.57 0.58 0.58 0.55 0.57
080802/D 0.53 0.51 0.55 0.52 0.48 0.53 0.61 0.59 0.57 0.62 0.59 0.57 0.62 0.58 0.62
080925/E 0.50 0.55 0.55 0.49 0.46 0.52 0.48 0.61 0.52 0.51 0.64 0.59 0.64 0.61 0.46
081002/E 0.47 0.53 0.47 0.49 0.45 0.50 0.49 0.43 0.57 0.36 0.36 0.56 0.08 0.51 0.48
081019/C 0.50 0.53 0.53 0.49 0.46 0.50 0.60 0.60 0.56 0.63 0.61 0.59 0.65 0.58 0.59
081023/C 0.50 0.56 0.50 0.47 0.52 0.63 0.59 0.63 0.68 0.67 0.64 0.65 0.63 0.64
081029/C 0.52 0.56 0.55 0.52 0.50 0.53 0.60 0.61 0.59 0.64 0.62 0.56 0.65 0.61 0.61
081105/C 0.48 0.54 0.54 0.50 0.48 0.50 0.60 0.61 0.61 0.66 0.65 0.61 0.64 0.62 0.66
081113/C 0.45 0.53 0.51 0.46 0.44 0.47 0.56 0.59 0.60 0.64 0.61 0.56 0.63 0.60 0.63
081205/B 0.51 0.54 0.50 0.50 0.49 0.52 0.62 0.61 0.61 0.66 0.66 0.54 0.65 0.62 0.60
081210/B 0.51 0.53 0.52 0.52 0.48 0.53 0.63 0.64 0.67 0.66 0.65 0.61 0.70
081217/B 0.48 0.53 0.49 0.45 0.48 0.64 0.63 0.63 0.71 0.54 0.65 0.61 0.65
090112/A 0.46 0.49 0.49 0.48 0.46 0.50 0.63 0.60 0.62 0.64 0.66 0.68 0.62 0.60 0.64
090114/A 0.46 0.51 0.51 0.51 0.48 0.53 0.60 0.59 0.59 0.61 0.26 0.58 0.61 0.59 0.63
090128/A 0.50 0.51 0.50 0.44 0.48 0.59 0.48 0.57 0.60 0.61 0.53 0.58
090204/A 0.47 0.50 0.49 0.48 0.51 0.47 0.57 0.56 0.59 0.58 0.55 0.60
090218/D 0.48 0.51 0.50 0.54 0.50 0.53 0.59 0.59 0.58 0.60 0.60 0.59 0.57 0.59
090304/D 0.55 0.53 0.49 0.47 0.63 0.42 0.65 0.60 0.64 0.53 0.62
Median 0.50 0.53 0.51 0.50 0.46 0.50 0.60 0.59 0.59 0.63 0.61 0.58 0.63 0.59 0.60

4. Measurements on Jupiter

Data sufficient to carry out the calculation in (7) are acquired (as of June 2008) using the script Aperture-
EfficiencySD.py. This script is described in more detail in Appendix 5. The power measurements are the
Psys values corresponding to each of the 500 MHz spectral bands at the inputs to the CARMA correlator;
front–end power measurements in the receiver, with potentially wider bandwidths, were not found to be as
stable as the Psys data for this purpose.

Between 2008 May and 2009 February, a significant number of datasets have been acquired using Jupiter as
the target; on each date 3 separate measurements were obtained, using each of the three spectral windows.
Elevations were generally low (below 25◦) due to the low declination of Jupiter. For a given measurement,
the 3 spectral windows on a given antenna agreed typically to within 1%. Median efficiencies for each date,
calculated using (7), are shown in Table 1. The final row of this table shows the median efficiencies for each
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antenna.

The calculations assume a brightness temperature of 179 K for Jupiter at 95 GHz, and diameters (41˝ -
45˝ ) obtained from the planetary ephemeris. In these measurements, the 10m antennas generally have
efficiencies at 3 mm that are close to 50%, while the 6m dishes are in the 60–65% range, and none of the
antennas appear significantly worse that their kin. The results of measurements at 1 mm on Jupiter are shown
in Table 2. In both tables anomalies on individual antennas may be found: such anomalies seldom represent
true aperture efficiencies, but result from other factors (poor tuning, etc.), and a number of measurements, as
are available at 3 mm, are needed in order to recognize clear trends. At present we do not have enough 1 mm
measurements to draw strong conclusions. C6 appears consistently to be low (around 33%), and the 10m
dishes are significantly less efficient than at 3 mm, as expected, but the variation from one measurement to
the next is larger at 1 mm than at 3 mm.

Table 2: Single–dish aperture efficiency measurements at 1 mm

Date/Array C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
080501/C 0.41 0.14 0.52 0.23 0.39 0.29 0.54 0.53 0.46 0.59 0.50 0.54 0.39 0.49
081023/C 0.39 0.48 0.33 0.40 0.30 0.59 0.57 0.58 0.62 0.55 0.57 0.57 0.64 0.50
081030/C 0.48 0.50 0.49 0.41 0.46 0.35 0.47 0.57 0.58 0.64 0.46 0.53 0.55 0.63 0.38
081205/B 0.38 0.45 0.47 0.38 0.44 0.32 0.61 0.62 0.61 0.65 0.50 0.59 0.57 0.63 0.53
081210/B 0.33 0.30 0.34 0.21 0.37 0.34 0.56 0.53 0.61 0.51 0.55 0.49 0.38
090311/D 0.46 0.40 0.53 0.47 0.56 0.34 0.63 0.57 0.52 0.58 0.45 0.54 0.57 0.50

5. Filled–aperture measurements on the Moon

The Moon is the brightest object available for calibration at millimeter wavelengths because it fills the tele-
scope beam with a source of temperature 100–300 K. However, it also has several drawbacks: its effective
temperature varies with position across the disk, and varies dramatically with lunar phase due to solar heat-
ing and the time delay required as heat propagates from the lunar surface downwards through the subsurface
layers into which millimeter wavelengths penetrate (see Figure 1; Linsky 1973; Mangum 1993; Sandor &
Clancy 1995). Another important difference is that because the Moon is so large it fills not only the pri-
mary beam, but also any beam sidelobes out to some considerable distance. This is in contrast to observing
a smaller object, which occupies only a fraction of the primary beam. Measurements of the power on the
Moon are therefore sensitive to the entire forward gain of the dish, rather than just the (smaller) forward gain
of the main lobe of the primary beam that is the relevant quantity for aperture efficiency measurements for an
interferometer observing a compact source. In the literature the telescope efficiency measured on the Moon,
which we will refer to as ε f , is described as the “forward scattering” efficiency, while the measurement of
the efficiency of the main lobe of the primary beam is referred to as the “main beam” efficiency.

In this case the power measured when the telescopes point at the Moon can be represented by the following
expression:
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Fig. 1.— Plot of the apparent brightness temperature of the center of the Moon as a function of date in 2008
at 3 mm (solid line) and 1 mm (dashed line) wavelengths. The data are calculated using the formula from
Mangum (1993), based on the study by Linsky (1973). The phase of the Moon is plotted as a dotted line at
the bottom of the panel: minima in this curve correspond to new moon.

Pmoon = G{Trec + (1− e−τ)ηTatm + (1 − η)Tspill + e−τε f Tmoon} (13)

The only significant difference from (3) is that the Moon always blocks the CMB entirely, so the CMB no
longer contributes to the power on source. Now setting YMoon = PMoon/Psky and using (1), (2) and (13), after
some algebra we find

ε f =
YMoon − 1
Yload − 1

Tload − Tsky
e−τ TMoon

+ η
TCMB
TMoon

(14)

As noted earlier, TMoon is problematic due to its rapid variation in time as direct solar heating moves pro-
gressively across the visible disk of the Moon, but at new Moon the disk–center brightness temperature is
relatively stable for a few days at minimum values of order 140 K at 95 GHz and 95 K at 225 GHz (see
Figure 1). Thus the best time to use the Moon for telescope efficiency measurements is around new Moon.

Table 3 shows the results of single-dish measurements of the Moon on 2008 April 10 (central disk brightness
temperature of 222 K from Mangum 1993), April 17 (183 K) and July 31 (close to new moon, 141 K) at 97
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GHz. As the table convincingly demonstrates, the absolute values of the efficiencies (frequently in excess
of 100%) are not reliable. The variation from one dataset to the next presumably reflects the limitations of
the model used for the Moon disk–center brightness temperature. The main feature of these measurements
is that all telescopes with good data show very similar efficiencies, with the 6m antennas only slightly
better (on average) than the 10m antennas. The similarity across all antennas presumably reflects the fact
that the Moon fills all the forward–scattering sidelobes, and any imperfections in main–beam patterns are
compensated by the filled sidelobes.

Table 3: Single–dish forward–scattering telescope efficiency measurements on the Moon

Date/Array C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
080410/C 0.61 0.62 0.61 0.60 0.63 0.68 0.63 0.65 0.68 0.67 0.67 0.65 0.63
080417/C 1.21 1.23 1.19 1.24 1.15 1.22 1.21 1.28 1.24 1.24 1.22 1.23 1.22
080731/D 1.02 1.02 1.00 1.05 0.97 1.03 1.07 1.04 1.04 1.11 1.08 1.08 1.07 1.08 1.07

Appendix 1: Telescope calibration

As described in CARMA Memo 33 (Woody 2006), we use power measurements on the sky and on an ambi-
ent load to determine the telescope system temperature and thus the calibration factors needed to convert the
correlator output into calibrated visibilities. At millimeter wavelengths the atmosphere can be a significant
issue that needs to be addressed by calibration. A common technique, used by CARMA and previously
by BIMA, is to calculate an equivalent temperature of a load above the atmosphere that would produce the
same power level in the receiver as the ambient load placed in the optical path. This temperature is called
Tcal , and this method is known as the Tcal method. (Note that at some telescopes both hot and cold loads are
available, which gives an additional measurement for calibration, but the discussion here only applies to the
single–load system appropriate to CARMA.) Recall that the power measured on the sky is, from (1),

Psky = G{Trec + (1− e−τ)ηTatm + (1 − η)Tspill + e−τηTCMB}

while the power measured on the ambient load is given by (2),

Pload = G{Trec + Tload}

where, as before, at CARMA Tload is the outside air temperature for the 10.4m dishes and the cabin temper-
ature for the 6.1m dishes. We now define Tcal to be the temperature of a load placed above the atmosphere
that produces the same power measurement in the receiver as the ambient load, i.e., we combine (1) and (2)
and set

Pload = G{Trec + Tload} = G{Trec + (1− e−τ)ηTatm + (1 − η)Tspill + e−τηTcal} (15)
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Thus we find that

Tcal =
Tload − (1− e−τ)ηTatm − (1 − η)Tspill

e−τη
(16)

The contribution of spillover is often ignored, since it is multiplied by the small number (1 − η). Note that
in (15) we have assumed that the Tcal load fills the beam and blocks the CMB; if instead we assume that the
Tcal load is small, then Tcal in (15) is replaced by Tcal + TCMB and we do the same thing in (16).

We can now write out an expression for the system temperature, defined as the temperature of a load that
doubles the output receiver power compared to its value with no load. The system temperature is the critical
quantity used to convert the correlation coefficients measured by an interferometer’s correlator into visibil-
ities correctly calibrated in Janskies. With Yload = Pload/Psky the system temperature becomes (Woody
2006)

Tsys =
Tcal

Yload − 1 (17)

This expression gives the system temperature above the atmosphere since it uses Tcal . Optionally, the nu-
merator may be Tcal − TCMB if the CMB is always in the beam (not the case when observing the Moon), but
since TCMB is of order 1 K and hence is always much less than Tcal , we can ignore this subtlety here.

Appendix 2: Opacities from weather data

When the 3 mm opacity at CARMA is not measured with a sky dip but must instead be calculated from
weather data (since there appears to be no simple relationship between the 3 mm opacity and the opacity
at 225 GHz measured by the tipper), we use a simple approximation to the continuum opacity from Waters
(1976) together with a model for the 119 GHz oxygen line due to Dave Woody (described in an 1989 note,
and in Andy Beard’s note on CARMA flux and Tsys calibration):

τ0 = 0.039 + 0.0090ρV +
3.57(P/876)2 (300/T )2.5

( fGHz − 118.75)2 + 1.4(P/876)(300/T )0.5 (18)

Here P is the pressure in millibars, T is the temperature in Kelvin, fGHz is the frequency in GHz and ρV
is the “surface absolute humidity” in g m−3. ρV is derived from the measured humidity H (as a decimal
fraction) as follows: the saturated water vapor pressure for a given temperature T is

PH2Osat = 6.11(
T

273 )−5.3 e25.2 T −273
T (19)

Then the partial vapor pressure is just PH2O = H PH2Osat and ρV = 217PH2O/T , i.e.,
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ρV = 1325H (
T

273 )−6.3 e25.2 T −273
T (20)

Note that τ0 is the zenith opacity, i.e. looking straight upwards (90◦ elevation). At any other elevation El
the opacity is proportional to the air mass appropriate to that line of sight:

τ = τ0 sec(El) (21)

In the 1 mm band, the τ0 measurement reported by the tipper should be used when available. Initially the
tipper was controlled by a laptop independent of the rest of the CARMA control system and the tipper data
were not available in the monitor data stream. The tipper measurements were however to be found on the
plots used at CARMA to assess the viability of 1 mm observations, and they are stored in the directory
/array/rt/TipperData. The monitor–stream variable is “OpacityMonitor.tau225”, but at the time of writing
(2009 February) this variable is zeroed out. Instead the monitor data stream reports the zenith value τ225
derived for 225 GHz from the precipitable water vapor measurement according to the following approxima-
tion:

τ225 ≈ 0.06precipmm + 0.005 (22)

where precipmm is the precipitable water column in millimeters reported by the weather station. Comparison
of this formula with the tipper data suggests that it is correct to within about 20%. This is the value used in
(16) to calculate the system temperature.

Appendix 3: Sky dips

In order to measure the zenith opacity τ0 in practice, one can carry out a “sky dip”: the power on the sky,
Psky, is measured at a number of different elevations, El. By (1),

Psky(El) = G{Trec + ηTatm + (1 − η)Tspill − η(Tatm − TCMB)e−τ0 sec(El)} (23)

Assuming that we have also measured the power on the ambient load given by (2), we may fit the mea-
sured Y–factor Pload/Psky as a function of air mass AM = 1/sin(El) and the receiver temperature ratio
R = Trec/Tatm and determine both τ0 and Trec:

Y (AM) =
Pload

Psky(AM)
=

R + Tload/Tatm
R + η(1 − e−τ0 AM) + (1 − η)Tspill/Tatm + ηe−τ0 AM TCMB/Tatm

(24)

As noted earlier, the relevant efficiency η that appears in this expression is not the main–beam efficiency that
is the principal subject of this memo, but rather the spillover or coupling efficiency. η is taken to be close to
unity in the dip analysis: at the Arizona 12m telescope η = 1 is used, while at CARMA we set η = 0.975.
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Fig. 2.— Plot of the “Y–factor” (ratio of ambient–load power to sky power) versus air mass for measure-
ments at 3 mm (113 GHz, left panel) and 1 mm (222 GHz, right panel) for each of the 15 CARMA antennas.
The measured values (averaged over the three observing bands) at each of 6 different air mass values are
plotted with cross symbols, and the best–fit shape of (25) is shown by a line (dashed for the 10.4m antennas,
solid for the 6.1m antennas).

The standard single–load calibration approach available at CARMA does not generally provide enough
data to determine unambiguously all the variables (τ0, Trec, η, Tspill ) in this equation.1 In practice the
assumption that Tspill does not depend on elevation is not correct: the dish elevation influences how much of
the spillover is warm ground and how much is cold sky, so adopting a constant value for Tspill is not strictly
appropriate. However, in practice Tspill appears only in the denominator multiplied by a small number, and
usually does not make a large contribution to the measured power, so the assumption of constant Tspill does
not significantly bias the results.

In the limit that τ0 AM � 1 and ignoring TCMB/Tatm, (1 − η) � 1, we can write

Y (AM) =
R + Tload/Tatm

R + τ0 AM

A plot of Y versus AM should therefore show a simple hyperbolic shape. The necessary data are acquired
at CARMA using the script dip1.py. We fit equation (24) for τ0 and Trec for each antenna separately with
the assumptions described above (η = 0.975, Tspill = Toutdoor) using an IDL routine that carries out a

1James Lamb uses an additional liquid nitrogen load for spillover measurements on the CARMA dishes, but this presently is a
two–person operation that is carried out one telescope at a time and requires taking the dish out of the array.
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Levenberg-Marquardt least-squares minimization of (24) (the routine optionally allows Tspill to be included
in the fit, or allows τ0 to be held fixed). An example of such data (acquired on 2008 June 15 at 113.2 GHz
and 222.0 GHz) and the corresponding fits is shown in Figure 2, with the results of the fits given in Table
4. Each antenna can be well fit by the functional form (24) and the resulting values of τ0 agree surprisingly
well between the 15 antennas even though the shapes of the curves, and the corresponding Trec values, vary
considerably (C13 is clearly anomalous at 1 mm, with an anomalously poor Trec).

Table 4: Sky–dip measurements of opacity and receiver temperature on 2008 June 15

Antenna 3 mm τ0 1 mm τ0 3 mm Trec 1 mm Trec
C1 0.19 0.37 85 64
C2 0.19 0.37 71 165
C3 0.19 0.37 64 43
C4 0.21 0.38 57 115
C5 0.18 0.38 72 54
C6 0.19 0.38 72 129

C7 0.19 0.37 56 35
C8 0.15 0.35 49 34
C9 0.20 0.36 63 38
C10 0.20 0.35 60 41
C11 0.19 0.38 68 36
C12 0.21 0.36 59 29
C13 0.19 0.52 54 498
C14 0.19 0.37 67 47
C15 0.23 0.37 45 39

The weather data predict opacities (as described in Appendix 2) of order 0.18 at 3 mm (where the two
sidebands were at 111 and 115 GHz, so they saw very different opacities) and 0.3-0.4 at 225 GHz during
the data acquisition, while the 230 GHz tipper reported a zenith opacity in the range 0.32 to 0.35, in quite
good agreement with our 1 mm dip value. Figure 3 shows a comparison of measured sky–dip opacities with
the values derived from the weather data as described in the previous section for a number of measurements
in 2008/2009. While the 1 mm formula appears to work quite well, there is a clear problem with the 3 mm
formula (18): it predicts very little variation in opacity at frequencies below 110 GHz where the oxygen
line has no significant contribution. Opacities at 100 GHz are almost always predicted to be around 0.05
from the weather data, being dominated by the constant 0.04 term in (18), while the 3mm dip measurements
show much more variation in reality. From (16), the system temperature measurement at low opacities is
proportional to 1 + τ, so, e.g., use of the value τ = 0.05 in calculating Tsys when the true value should be
τ = 0.10 results in a 5% underestimate of Tsys.
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Fig. 3.— A comparison of measurements of zenith opacity from sky dips with the corresponding values
predicted from the weather data using equations (18) and (22) at 3 mm (plus symbols) and 1 mm (dot
symbols), respectively.

To fit dip data at CARMA, follow the instructions in the file tau dip instructions.txt; alternatively, there is a
one-step IDL routine as follows, e.g.,

cd /array/rt/Dips
idl
IDL> fit_dip,’2008may31.dip1_tsys.dat’,/output

Since the data for each fit (each of 3 bands on each of 15 antennas) is independent, consistency between
antennas indicates a good result. We generally find this to be the case with CARMA dip data.
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Appendix 4: Primary beam sizes

As discussed by Baars (2003), the actual size of an antenna primary beam depends on the way in which the
dish surface illuminates the subreflector and then the feed horn. In practice it is usually easier to think about
this in reverse order with the feed horn as a radiator that illuminates the subreflector and in turn the dish
surface. The illumination pattern (which in theory is a Bessel function for a uniform circular aperture, not
a Gaussian function) can be controlled by the design of the feed horn and subreflector, and is often tapered
at the edges of the dish in order to reduce spillover effects at the edge of the primary beam, with the effect
that the full dish aperture is not being used and the primary beam size is slightly larger than the canonical
value for uniform illumination of the dish (no tapering), θFWHM = λ/D, where λ is the wavelength and D
the dish diameter (Baars 2003, finds 1.02 λ/D in practice for uniform illumination out to the edge of the
dish). For a typical Gaussian taper with an 11 dB reduction in sensitivity at the edge of the illumination
pattern compared to the center of the dish, θFWHM = 1.22λ/D (which also happens to be the angular size of
the first null in the Bessel function pattern of a uniformly illuminated dish). Most real dishes lie somewhere
between these two limits, e.g., Lugten (1995) reports that θFWHM = 1.14λ/D for the antenna power pattern
in his analysis of the performance of the D = 6.1m BIMA antennas. For the CARMA dishes, different
illumination patterns give the beam sizes (at 100 GHz) reported in Table 5.

Table 5: Theoretical CARMA antenna primary beam sizes (FWHM) at 100 GHz

10.4m dishes 6.1m dishes
λ/D 59.5˝ 101.4˝

1.14λ/D 67.8˝ 115.6˝
1.22λ/D 72.6˝ 123.8˝

As part of the radio pointing procedure at CARMA, Gaussian fits are made to the widths of the primary
beams in order to exclude bad data, so the radio pointing data contain a large number of actual fits of the
amplitude (not the power) FWHM. Note that in practice a Gaussian is not always a good representation of
the beam pattern (Corder & Wright 2006; Wright & Corder 2008). We have gone through recent data and
using close to 500 “good” measurements per antenna, we find that the mean primary beam sizes (geometric
mean of azimuth and elevation axis widths, converted to the power FWHM assuming that it is the amplitude
FWHM divided by

√
2) at 100 GHz are as shown in Table 6. The results in this table correspond to 1.10λ/D

for the 10.4m dishes and 1.07λ/D for the 6.1m dishes.

Appendix 5: The ApertureEfficiencySD script

In this appendix we describe the script for acquiring single–dish aperture efficiency data (as of July 2008).
The script is invoked as follows: in sac (the python subarray controller), type, e.g.,
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Table 6: Measured CARMA antenna primary beam sizes (FWHM) at 100 GHz

Antenna Median (˝ ) Mean (˝ ) St. dev. (˝ )
1 65.5 65.7 ± 2.4
2 65.0 65.4 ± 2.5
3 63.4 63.7 ± 2.4
4 66.7 67.1 ± 2.7
5 65.2 65.4 ± 1.7
6 66.6 66.8 ± 2.2

7 106.6 106.8 ± 3.0
8 107.9 108.3 ± 3.6
9 109.1 109.5 ± 3.2

10 108.9 109.3 ± 2.9
11 110.0 110.7 ± 3.8
12 108.9 109.0 ± 3.2
13 108.5 108.8 ± 3.0
14 108.4 108.7 ± 3.4
15 108.5 108.7 ± 3.6

import ApertureEfficiencySD as SD
SD.CalculateApertureEff(planet=’jupiter’,tuning_frequency=’3mm’, \

pointing_source=’1924-292’)
or

SD.CalculateApertureEff(planet=’moon’,tuning_frequency=’3mm’, \
performPointing=False,myoffset=20.)

The keywords should be fairly self–explanatory: reference pointing is not necessary on the Moon since it
is so large. The offset on the Moon (in arcminutes) is for the sky power measurement: it needs to be large
enough to move off the planet (defaults to 5´).

The script carries out the following actions:

• Tunes to “3 mm” (IF at 95 GHz) or “1 mm” (IF at 223.0 GHz).

• Carries out reference pointing (if requested; highly desirable for any source except the Moon). Gen-
erally a nearby quasar should be used, since pointing on large planets is not reliable.

• Reads the weather data necessary for the load temperatures and to calculate atmospheric opacity
(Drive.Weather.ambientTemp at each active 10m antenna, BimaSpecific.CalPlate.tempAmb at each
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active 6m antenna, Weather.Tau225, PhaseMonitor.skyRMS, Weather.DewPointSensor.humidity, Wea-
ther.pressure, Weather.waterDensity, Weather.precipWater) from the monitor stream.

• The physical parameters of the planet (brightness temperature, size), which are extracted from the
planetary ephemeris and loaded into the monitor data when the source name is set, are read (Control.-
Subarrayn.planetTemperature, Control.Subarrayn.planetMajorAxis, Control.Subarrayn.planetMinor-
Axis) and recorded.

• If desired (checkPointing=True, not the default) carries out an interferometer measurement on the
planet in a cross pattern to check that the pointing is good (generally not needed).

• Offsets in azimuth from the planet, then the ambient load is placed into the beam path and the power
on the load is measured. Each time the power is measured, the following is done: the elevation
is recorded, Tsys is determined for each antenna and band (monitor point SlPipeline.Inputn.Bandm.-
Tsys.Dsb), the Psys power values at the inputs to the correlator (Sldc.Bandm.Inputn.psys) are recorded,
and for comparison the front–end power levels (n.AntennaIfContainer.AntennaIF.ifOutTotalPower),
which sample a wider bandwidth but are less stable than the Psys powers and hence are not used for
the final analysis, may be recorded. Each of these measurements may be sampled up to 20 times, but
tests indicate that a single Psys power measurement is sufficiently repeatable.

• The load is removed from the beam path and the power Psky is measured in the sky position.

• The antennas are moved back to the source, the ambient load is placed in the beam path and the power
is measured.

• The load is removed from the beam path and the power Psrc is measured on the source.

• This cycle is repeated 3 times.

• A sky dip is carried out at the observing frequency to measure the sky opacity (unless skyDip=False).

The output data files are written to the directory /array/rt/apertureEff/singleDish. There are then two paths
for the final calculation of aperture efficiency: a python script, and an IDL routine. The python analysis
routine SingleDishEfficiency.py is the result of the conversion by Brian Prager of an Excel spreadsheet of
Ashley Zauderer and can be invoked as follows, e.g.

cd /array/rt/apertureEff/singleDish
Preprocess_Data.csh 3mmfreq2008mmmdd.SD.planet.dat
cd 3mmfreq2008mmmdd.planet
../SingleDishEfficiency.py A=43.81 Tau225=.436 In=output.txt TPlanet=179 \

IntTime=.5 BandWid=1.5 Date=06-01-2008 Tout=282.75 Elevat=30.2 Phase=372 \
Freq=97.15 Tau=.09 Planet=Jupiter Full=0 Out=Efficiencies.dat \
Stat=Stats.dat
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Presently the planet data and atmospheric data have to be supplied as keywords. A future version will avoid
this need. To use the IDL version, in the same directory run the routine sd to eff with the data file name as
an argument:

cd /array/rt/apertureEff/singleDish
idl
IDL> sd_to_eff,’3mmfreq2008aug02.SD.jupiter.dat’,/output
IDL> exit

With the /output option the results are written to a file in the Results subdirectory; optionally, the zenith
opacity measured by the sky dip can be used in place of the weather value by supplying it as a keyword
(tau=...).

Acknowledgements

We thank Andy Harris, James Lamb, Lee Mundy and Dave Woody for valuable discussions and suggestions.

REFERENCES

Baars, J. W. M. 2003, ALMA Memo 456: Characteristics of a reflector antenna (NRAO/ESO)

Corder, S. & Wright, M. C. H. 2006, CARMA Memo 36

Folkers, T. W. 2004, Users Manual for the ARO 12m Millimeter-Wave Telescope (Tucson: Arizona Radio
Observatory)

Kramer, C. 2005, Spatial response framework document of the HIFI/Herschel Calibration Group
(KOSMA/Uni. Köln)

Kutner, M. L. & Ulich, B. L. 1981, Astrophys. J., 250, 341

Linsky, J. L. 1973, Astrophys. J. Supp., 25, 163

Lugten, J. B. 1995, BIMA Memo 39: Optical Design and Performance of the BIMA Interferometer

Mangum, J. 2002, ALMA Memo 434: Load calibration at millimeter and submillimeter wavelengths
(NRAO/ESO)

Mangum, J. G. 1993, Publ. Astron. Soc. Pacific, 105, 117

Moreno, R. & Guilloteau, S. 2002, ALMA Memo 372: An amplitude calibration strategy for ALMA
(NRAO/ESO)



– 21 –

Plambeck, R. L. 2000, ALMA Memo Series, 321

Sandor, B. J. & Clancy, R. T. 1995, Icarus, 115, 387

Serabyn, E., Weisstein, E. W., Lis, D. C., & Pardo, J. R. 1998, Applied Optics, 37, 2185

Stutzman, W. L. & Ko, H. C. 1974, IEEE Transactions on Antennas and Propagation, 22, 493

Ulich, B. L. & Haas, R. W. 1976, Astrophys. J. Supp., 30, 247

Waters, J. W. 1976, in Methods of Experimental Physics, Vol. 12B, ed. M. L. Meeks (New York: Academic
Press), 142

Woody, D. P. 2006, CARMA Memo 33

Wright, M. C. H. & Corder, S. 2008, CARMA Memo 43


