INFO : AT.py : Setting {'basename': 'x', 'file': 'R-Cas_94052.nfs.fits'} for Ingest_AT
INFO : AT.py : Setting 'ppp' = True for CubeStats_AT
INFO : AT.py : Setting 'numsigma' = 4.0 for CubeSum_AT
INFO : AT.py : Setting 'sigma' = 99.0 for CubeSum_AT
INFO : AT.py : Setting 'numsigma' = 4.0 for SFind2D_AT
INFO : Admit.py : ADMIT run() called [flowcount 1]
INFO : 
INFO : 
INFO :    Executing Ingest_AT - '' (V1.2.13)
INFO : 
INFO : 
INFO :   Run using the following settings:
INFO :     box :  []
INFO :     file :  R-Cas_94052.nfs.fits
INFO :     smooth :  []
INFO :     basename :  x
INFO :     mask :  True
INFO :     pb :  
INFO :     edge :  []
INFO :     restfreq :  -1.0
INFO :     vlsr :  -999999.9
INFO :     usepb :  True
INFO : 
TIMING : Ingest ADMIT [  2.20422500e+00   1.64729392e+09]
TIMING : Ingest BEGIN [ 0.  0.]
INFO : Ingest_AT.py : OBJECT: R-Cas   SHAPE: [  97   97 2062]
INFO : Ingest_AT.py : basename=x
INFO : utils.py : OSTYPE: linux
TIMING : Ingest start  [  3.52903000e-01   3.60136986e-01   1.41040625e+03   2.11519531e+02]
TIMING : Ingest importfits  [  2.53356000e-01   6.31368876e-01   1.41110938e+03   2.13343750e+02]
WARNING : Ingest_AT.py : Adding dummy STOKES-I axis
TIMING : Ingest adddegaxes  [  1.24830000e-01   1.65058136e-01   1.42085938e+03   2.23851562e+02]
TIMING : Ingest summary-0  [  1.41830000e-02   1.43029690e-02   1.42085938e+03   2.23851562e+02]
TIMING : Ingest mask  [  1.25860000e-01   1.35885954e-01   1.42103125e+03   2.24093750e+02]
TIMING : Ingest summary-1  [  1.46840000e-02   1.86049938e-02   1.42103125e+03   2.24093750e+02]
TIMING : Ingest statistics  [  2.19766000e-01   2.20273018e-01   1.42393750e+03   2.27917969e+02]
INFO : Ingest_AT.py : COMMONBEAM[3] {'major': {'value': 17.2500012, 'unit': 'arcsec'}, 'pa': {'value': 0.0, 'unit': 'deg'}, 'minor': {'value': 17.2500012, 'unit': 'arcsec'}}
INFO : Ingest_AT.py : BASICS: [shape] npts min max: [  97   97 2062    1] 15009298 -0.110412 20.113247
INFO : Ingest_AT.py : S/N (all data): 374.515083
INFO : Ingest_AT.py : GOOD PIXELS: 15009298/19401358 (77.362100% good or 22.637900% bad)
WARNING : Ingest_AT.py : MASKS: ['mask0']
REGRESSION : CUBE: -0.110412 20.1132 0.0537048  97 97 2062  22.637900
INFO : Ingest_AT.py : TELESCOPE: LMT
INFO : Ingest_AT.py : OBJECT: R-Cas
INFO : Ingest_AT.py : REFFREQTYPE: LSRK
INFO : Ingest_AT.py : RA   Axis 1: 359.603600 -7.499999 48.000000
INFO : Ingest_AT.py : DEC  Axis 2: 51.388800 7.499999 48.000000
INFO : Ingest_AT.py : VLSRv = 0.000000 (from source catalog)
INFO : Ingest_AT.py : VLSRz = 0.000000 +/- 0.000000   1 values: [ 0.]
INFO : Ingest_AT.py : Freq Orig Axis 3: 86.3372 -9.76562e-05 0
INFO : Ingest_AT.py : Cube Orig Axis 3: type=Frequency  velocity increment=0.339465 km/s @ fc=86.236577 fw=-0.201367 GHz
INFO : Ingest_AT.py : RESTFREQ: 86.2434 86.2434 -1
INFO : Ingest_AT.py : VLSRc= 23.864173  VLSRf= 0.000000  VLSRv= 0.000000 VLSRz= 0.000000 WIDTH= 699.976211
INFO : Ingest_AT.py : VLSR = 23.864173 errs = 0.000000 0.000000 0.000000 width = 0.339465
TIMING : Ingest done  [  7.40151000e-01   7.46001959e-01   1.42693750e+03   2.31222656e+02]
TIMING : Ingest END [ 1.85805     2.30398798]
INFO : AT.py : BDP_OUT[0] = SpwCube_BDP x.im
INFO : 
INFO : 
INFO :    Executing CubeStats_AT - '' (V1.2.3)
INFO : 
INFO : 
INFO :   Run using the following settings:
INFO :     ppp :  True
INFO :     psample :  -1
INFO :     robust :  []
INFO :     maxvrms :  2.0
INFO : 
TIMING : CubeStats ADMIT [  4.12372500e+00   1.64729392e+09]
TIMING : CubeStats BEGIN [ 0.  0.]
TIMING : CubeStats imval  [  6.24440000e-02   6.34551048e-02   1.42568750e+03   2.30054688e+02]
TIMING : CubeStats start  [  1.27510000e-02   1.27830505e-02   1.42568750e+03   2.30363281e+02]
TIMING : CubeStats imstat0  [  9.97179000e-01   1.00031304e+00   1.44131250e+03   2.46160156e+02]
TIMING : CubeStats imstat1  [  9.13816000e-01   9.16008949e-01   1.46439453e+03   2.69546875e+02]
INFO : CubeStats_AT.py : sigma varies from 0.005480 to 0.021662; 2062/2062 channels ok
WARNING : CubeStats_AT.py : sigma varies too much, going to clip to 0.0109603 (3.95282 > 2)
INFO : CubeStats_AT.py : Computing MaxPos for PeakPointPlot
TIMING : CubeStats ppp  [    2.450507       2.45916605  1427.48046875   232.734375  ]
INFO : CubeStats_AT.py : CubeMax: 20.113247 @ [  47   48 1034    0]
INFO : CubeStats_AT.py : CubeMin: -0.110412 @ [ 47  48 824   0]
INFO : CubeStats_AT.py : CubeRMS: 0.010342
INFO : CubeStats_AT.py : RMS Sanity check 5.192881
WARNING : CubeStats_AT.py : RMS sanity check = 5.192881.  Either bad sidelobes, lotsa signal, or both
REGRESSION : CST: 0.010342 5.192881
INFO : CubeStats_AT.py : mean,rms,S/N=0.000519 0.010342 1944.812201
INFO : CubeStats_AT.py : RMS BAD VARIATION RATIO: 2.245667 2.411395
TIMING : CubeStats plotting  [    2.441197       2.63597202  1455.08203125   258.33203125]
TIMING : CubeStats done  [  1.38220000e-02   1.38559341e-02   1.45508203e+03   2.58332031e+02]
TIMING : CubeStats summary  [  1.25920000e-02   1.26378536e-02   1.45508203e+03   2.58332031e+02]
TIMING : CubeStats END [ 6.916617    7.12654018]
INFO : AT.py : BDP_OUT[0] = CubeStats_BDP x.cst
INFO : 
INFO : 
INFO :    Executing CubeSum_AT - '' (V1.2.2)
INFO : 
INFO : 
INFO :   Run using the following settings:
INFO :     linesum :  True
INFO :     numsigma :  4.0
INFO :     zoom :  1
INFO :     pad :  5
INFO :     sigma :  99.0
INFO : 
TIMING : CubeSum ADMIT [  1.11004290e+01   1.64729393e+09]
TIMING : CubeSum BEGIN [ 0.  0.]
INFO : CubeSum_AT.py : Using constant sigma = 0.010342
TIMING : CubeSum start  [  5.31310000e-02   5.33258915e-02   1.45508203e+03   2.58332031e+02]
TIMING : CubeSum immoments  [  2.70702000e-01   2.99544096e-01   1.46075781e+03   2.64402344e+02]
TIMING : CubeSum statistics  [  2.06420000e-02   2.07269192e-02   1.46075781e+03   2.64402344e+02]
INFO : CubeSum_AT.py : Total flux: 170663.200072 (sum=3034.013417)
REGRESSION : CSM: [170663.20007179558, 3034.0134166050261]
TIMING : CubeSum implot  [  1.49264000e-01   6.07511115e+00   1.53276172e+03   2.64542969e+02]
TIMING : CubeSum getdata  [  2.32380000e-02   2.33099461e-02   1.53276172e+03   2.64542969e+02]
TIMING : CubeSum done  [  2.99230000e-01   3.19190025e-01   1.53276172e+03   2.64660156e+02]
TIMING : CubeSum END [ 0.830316    6.80535889]
INFO : AT.py : BDP_OUT[0] = Moment_BDP x.csm
INFO : 
INFO : 
INFO :    Executing SFind2D_AT - 'csm' (V1.2.2)
INFO : 
INFO : 
INFO :   Run using the following settings:
INFO :     nmax :  30
INFO :     numsigma :  4.0
INFO :     snmax :  35.0
INFO :     region :  
INFO :     zoom :  1
INFO :     robust :  ['hin', 1.5]
INFO :     sigma :  -1.0
INFO : 
TIMING : SFind2D ADMIT [  1.19938490e+01   1.64729394e+09]
TIMING : SFind2D BEGIN [ 0.  0.]
TIMING : SFind2D start  [  3.60030000e-02   3.61280441e-02   1.53276172e+03   2.64660156e+02]
TIMING : SFind2D imstat  [  4.36460000e-02   4.38709259e-02   1.53276172e+03   2.64660156e+02]
INFO : AT.py : Setting 'sigma' = 0.137818316672 for SFind2D_AT
INFO : SFind2D_AT.py : sigma, dmin, dmax, snmax, cutoff 0.137818 -0.448795 69.0754 35 0.0285714
WARNING : SFind2D_AT.py : Temporarely patching your K.km/s units to Jy/beam for ia.findsources()
TIMING : SFind2D findsources  [  9.51960000e-02   1.21773005e-01   1.53276172e+03   2.64828125e+02]
INFO : SFind2D_AT.py : Right Ascen.  Declination   X(pix)   Y(pix)      Peak       Flux    Major   Minor    PA    SNR
INFO : SFind2D_AT.py :                                                K.km/s       Jy    arcsec   arcsec   deg
INFO : SFind2D_AT.py : 23:58:25.526 +51.23.17.67    47.17    47.73       63.2        377  43.668  39.460   84.0  458.8
INFO : SFind2D_AT.py : Wrote ds9.reg
TIMING : SFind2D table  [  1.34512000e-01   1.38768911e-01   1.53276172e+03   2.65394531e+02]
REGRESSION : CONTFLUX: 1 377.218
INFO : SFind2D_AT.py :  Fitted Gaussian size; NOT deconvolved source size.
INFO : SFind2D_AT.py :  Restoring Beam: Major axis:       17.3 arcsec , Minor axis:       17.3 arcsec , PA:   0.0 deg
WARNING : SFind2D_AT.py : LogScaling applied
TIMING : SFind2D done  [  3.72170000e-01   3.91395092e-01   1.53251172e+03   2.65175781e+02]
TIMING : SFind2D END [ 0.696504    0.74694705]
INFO : AT.py : BDP_OUT[0] = SourceList_BDP x-csm.sl
TIMING : ADMITrun END [ 10.96478     17.70669007]
INFO : Admit.py : ADMIT run() finished [flowcount 1] [cpu 10.9648 17.7067 ]
INFO : AT.py : Setting 'csub' = [0, 0] for LineSegment_AT
INFO : Admit.py : ADMIT run() called [flowcount 1]
INFO : 
INFO : 
INFO :    Executing CubeSpectrum_AT - '' (V1.2.5)
INFO : 
INFO : 
INFO :   Run using the following settings:
INFO :     xaxis :  
INFO :     sources :  [0]
INFO :     pos :  []
INFO : 
TIMING : CubeSpectrum ADMIT [  1.29840620e+01   1.64729394e+09]
TIMING : CubeSpectrum BEGIN [ 0.  0.]
INFO : CubeSpectrum_AT.py : CubeStats::maxpos,val=[47, 48, 1034],20.113247
TIMING : CubeSpectrum CubeStats-pos  [  4.86140000e-02   4.87618446e-02   1.53251172e+03   2.65175781e+02]
INFO : CubeSpectrum_AT.py : CubeSum::maxpos,val=[47, 48],69.075394
TIMING : CubeSpectrum Moment-pos  [  4.29130000e-02   4.30481434e-02   1.53251172e+03   2.65175781e+02]
INFO : CubeSpectrum_AT.py : SourceList::maxpos,val=('23h58m25.526s', '+51d23m17.67s'),63.226089
TIMING : CubeSpectrum SourceList-pos  [  3.58450000e-02   3.59368324e-02   1.53251172e+03   2.65175781e+02]
TIMING : CubeSpectrum open  [  1.21650000e-02   1.21970177e-02   1.53251172e+03   2.65175781e+02]
TIMING : CubeSpectrum imval  [  5.49800000e-02   5.51919937e-02   1.53251172e+03   2.65609375e+02]
TIMING : CubeSpectrum imhead  [  4.23670000e-02   4.25090790e-02   1.53251172e+03   2.65609375e+02]
TIMING : CubeSpectrum imval  [  3.04377000e-01   3.23261976e-01   1.53251172e+03   2.65656250e+02]
REGRESSION : CSP: [20.113246917724609, 20.113246917724609]
INFO : CubeSpectrum_AT.py : Writing 2 testCubeSpectrum tables
TIMING : CubeSpectrum done  [  2.86785000e-01   3.05665016e-01   1.53251172e+03   2.65656250e+02]
TIMING : CubeSpectrum summary  [  1.24920000e-02   1.25238895e-02   1.53251172e+03   2.65656250e+02]
TIMING : CubeSpectrum END [ 0.852699    0.89128995]
INFO : AT.py : BDP_OUT[0] = CubeSpectrum_BDP x.csp
INFO : 
INFO : 
INFO :    Executing LineSegment_AT - '' (V1.2.3)
INFO : 
INFO : 
INFO :   Run using the following settings:
INFO :     numsigma :  5.0
INFO :     minchan :  4
INFO :     edgechannels :  0
INFO :     smooth :  []
INFO :     recalcnoise :  False
INFO :     maxgap :  3
INFO :     csub :  [0, 0]
INFO :     iterate :  True
INFO :     segment :  ADMIT
INFO : 
TIMING : LineSegment ADMIT [  1.38970470e+01   1.64729394e+09]
TIMING : LineSegment BEGIN [ 0.  0.]
TIMING : LineSegment start  [  2.44600000e-02   2.45239735e-02   1.53251172e+03   2.65656250e+02]
INFO : LineSegment_AT.py : Attempting Continuum Subtraction for Input Spectra
INFO : LineSegment_AT.py : Attempting Continuum Subtraction for Input CubeStats Spectra
TIMING : LineSegment getspectrum  [   57.045577      57.19616294  1532.51171875   266.046875  ]
INFO : LineSegment_AT.py : Detecting segments in CubeSpectrum based data
WARNING : specutil.py : 0 [127, 130]
WARNING : specutil.py : 1 [158, 165]
WARNING : specutil.py : 2 [223, 233]
WARNING : specutil.py : 3 [256, 259]
WARNING : specutil.py : 4 [383, 386]
WARNING : specutil.py : 5 [496, 500]
WARNING : specutil.py : 6 [561, 564]
WARNING : specutil.py : 7 [569, 572]
WARNING : specutil.py : 8 [751, 754]
WARNING : specutil.py : 9 [814, 829]
WARNING : specutil.py : 10 [928, 934]
WARNING : specutil.py : 11 [979, 982]
WARNING : specutil.py : 12 [990, 993]
WARNING : specutil.py : 13 [1018, 1060]
WARNING : specutil.py : 14 [1092, 1095]
WARNING : specutil.py : 15 [1195, 1198]
WARNING : specutil.py : 16 [1227, 1233]
WARNING : specutil.py : 17 [1263, 1266]
WARNING : specutil.py : 18 [1370, 1375]
WARNING : specutil.py : 19 [1479, 1482]
WARNING : specutil.py : 20 [1868, 1871]
WARNING : specutil.py : 21 [1899, 1904]
WARNING : specutil.py : 22 [55, 57]
WARNING : specutil.py : 0 [127, 130]
WARNING : specutil.py : 1 [158, 165]
WARNING : specutil.py : 2 [223, 233]
WARNING : specutil.py : 3 [256, 259]
WARNING : specutil.py : 4 [383, 386]
WARNING : specutil.py : 5 [496, 500]
WARNING : specutil.py : 6 [561, 564]
WARNING : specutil.py : 7 [569, 572]
WARNING : specutil.py : 8 [751, 754]
WARNING : specutil.py : 9 [814, 829]
WARNING : specutil.py : 10 [928, 934]
WARNING : specutil.py : 11 [979, 982]
WARNING : specutil.py : 12 [990, 993]
WARNING : specutil.py : 13 [1018, 1060]
WARNING : specutil.py : 14 [1092, 1095]
WARNING : specutil.py : 15 [1195, 1198]
WARNING : specutil.py : 16 [1227, 1233]
WARNING : specutil.py : 17 [1263, 1266]
WARNING : specutil.py : 18 [1370, 1375]
WARNING : specutil.py : 19 [1479, 1482]
WARNING : specutil.py : 20 [1868, 1871]
WARNING : specutil.py : 21 [1899, 1904]
WARNING : specutil.py : 22 [55, 57]
INFO : LineSegment_AT.py : Detecting segments in CubeStats based data
WARNING : specutil.py : 0 [508, 511]
WARNING : specutil.py : 1 [1019, 1059]
WARNING : specutil.py : 0 [822, 828]
WARNING : specutil.py : 1 [1926, 1931]
WARNING : specutil.py : 2 [1975, 1978]
TIMING : LineSegment segment finder  [    5.82368        5.84226608  1532.51171875   266.046875  ]
INFO : LineSegment_AT.py :  Segment Coverage 164 / 2062 = 0.0795344
REGRESSION : LINESEG: [[86.287309239027692, 86.287602207747071], [86.233793619623114, 86.237699869214694], [86.256352211014459, 86.256938148453202], [86.148637378526757, 86.149125659725726], [86.144047535256675, 86.144340503976039], [86.324516266387448, 86.324809235106827], [86.321098297994823, 86.321781891673353], [86.314457673689148, 86.315434236087043], [86.311918611454615, 86.312211580173994], [86.299516269001373, 86.299809237720737], [86.288383457665375, 86.288774082624542], [86.282133458318867, 86.282426427038217], [86.281352208400548, 86.281645177119913], [86.263578772758876, 86.263871741478241], [86.256254554774671, 86.25771939837152], [86.24600064959678, 86.246586587035523], [86.241313150086896, 86.24160611880626], [86.240238931449213, 86.240531900168577], [86.233695963383326, 86.237797525454482], [86.230277994990686, 86.230570963710065], [86.220219402292386, 86.220512371011765], [86.216801433899761, 86.217387371338503], [86.213578777986712, 86.21387174670609], [86.202934247849669, 86.203422529048609], [86.192485030192202, 86.192777998911581], [86.154496752914142, 86.154789721633506], [86.151274097001078, 86.151762378200033], [86.331645171892077, 86.331840484371654], [86.324516266387448, 86.324809235106827], [86.321098297994823, 86.321781891673353], [86.314457673689148, 86.315434236087043], [86.311918611454615, 86.312211580173994], [86.299516269001373, 86.299809237720737], [86.288383457665375, 86.288774082624542], [86.282133458318867, 86.282426427038217], [86.281352208400548, 86.281645177119913], [86.263578772758876, 86.263871741478241], [86.256254554774671, 86.25771939837152], [86.24600064959678, 86.246586587035523], [86.241313150086896, 86.24160611880626], [86.240238931449213, 86.240531900168577], [86.233695963383326, 86.237797525454482], [86.230277994990686, 86.230570963710065], [86.220219402292386, 86.220512371011765], [86.216801433899761, 86.217387371338503], [86.213578777986712, 86.21387174670609], [86.202934247849669, 86.203422529048609], [86.192485030192202, 86.192777998911581], [86.154496752914142, 86.154789721633506], [86.151274097001078, 86.151762378200033], [86.331645171892077, 86.331840484371654]]
TIMING : LineSegment done  [    2.401836       2.51962686  1557.734375     290.98828125]
TIMING : LineSegment END [ 65.307958    65.59501696]
INFO : AT.py : BDP_OUT[0] = LineSegment_BDP x.lseg
TIMING : ADMITrun END [ 77.462305    84.58983707]
INFO : Admit.py : ADMIT run() finished [flowcount 1] [cpu 77.4623 84.5898 ]
INFO : Admit.py : ADMIT run() called [flowcount 1]
TIMING : ADMITrun END [ 77.569989    84.77585912]
INFO : Admit.py : ADMIT run() finished [flowcount 1] [cpu 77.57 84.7759 ]
INFO : AT.py : Setting 'csub' = [0, 0] for LineID_AT
INFO : AT.py : Setting 'references' = etc/tier1_lines.list for LineID_AT
INFO : Admit.py : ADMIT run() called [flowcount 1]
INFO : 
INFO : 
INFO :    Executing LineID_AT - '' (V1.2.7)
INFO : 
INFO : 
INFO :   Run using the following settings:
INFO :     numsigma :  5.0
INFO :     force :  []
INFO :     tier1width :  0.0
INFO :     online :  False
INFO :     recomblevel :  shallow
INFO :     references :  etc/tier1_lines.list
INFO :     csub :  [0, 0]
INFO :     identifylines :  True
INFO :     iterate :  True
INFO :     segment :  ADMIT
INFO :     allowexotics :  False
INFO :     minchan :  4
INFO :     pattern :  AUTO
INFO :     edgechannels :  0
INFO :     smooth :  []
INFO :     recalcnoise :  False
INFO :     vlsr :  -999999.99
INFO :     maxgap :  3
INFO :     reject :  []
INFO :     method :  {'PeakFinder': {'thresh': 0.0}}
INFO :     mode :  ONE
INFO : 
TIMING : LineID ADMIT [  7.96135660e+01   1.64729401e+09]
TIMING : LineID BEGIN [ 0.  0.]
INFO : LineID_AT.py : Set vlsr = 23.86 for line identification.
INFO : LineID_AT.py : Identifylines = True
INFO : LineID_AT.py : Using vlsr = 23.8642
INFO : LineID_AT.py : Attempting Continuum Subtraction for Input Spectra
TIMING : LineID getspectrum-cubespecs  [   36.902285      37.02344084  1557.734375     291.16796875]
INFO : LineID_AT.py : Attempting Continuum Subtraction for Input CubeStats Spectra
TIMING : LineID getspectrum-cubestats  [   20.326885      20.40383315  1557.734375     291.16796875]
TIMING : LineID segment finder  [  1.47480000e-02   1.48119926e-02   1.55773438e+03   2.91167969e+02]
INFO : LineID_AT.py : Detecting segments in CubeSpectrum based data
WARNING : specutil.py : 0 [127, 130]
WARNING : specutil.py : 1 [158, 165]
WARNING : specutil.py : 2 [223, 233]
WARNING : specutil.py : 3 [256, 259]
WARNING : specutil.py : 4 [383, 386]
WARNING : specutil.py : 5 [496, 500]
WARNING : specutil.py : 6 [561, 564]
WARNING : specutil.py : 7 [569, 572]
WARNING : specutil.py : 8 [751, 754]
WARNING : specutil.py : 9 [814, 829]
WARNING : specutil.py : 10 [928, 934]
WARNING : specutil.py : 11 [979, 982]
WARNING : specutil.py : 12 [990, 993]
WARNING : specutil.py : 13 [1018, 1060]
WARNING : specutil.py : 14 [1092, 1095]
WARNING : specutil.py : 15 [1195, 1198]
WARNING : specutil.py : 16 [1227, 1233]
WARNING : specutil.py : 17 [1263, 1266]
WARNING : specutil.py : 18 [1370, 1375]
WARNING : specutil.py : 19 [1479, 1482]
WARNING : specutil.py : 20 [1868, 1871]
WARNING : specutil.py : 21 [1899, 1904]
WARNING : specutil.py : 22 [55, 57]
WARNING : specutil.py : 0 [127, 130]
WARNING : specutil.py : 1 [158, 165]
WARNING : specutil.py : 2 [223, 233]
WARNING : specutil.py : 3 [256, 259]
WARNING : specutil.py : 4 [383, 386]
WARNING : specutil.py : 5 [496, 500]
WARNING : specutil.py : 6 [561, 564]
WARNING : specutil.py : 7 [569, 572]
WARNING : specutil.py : 8 [751, 754]
WARNING : specutil.py : 9 [814, 829]
WARNING : specutil.py : 10 [928, 934]
WARNING : specutil.py : 11 [979, 982]
WARNING : specutil.py : 12 [990, 993]
WARNING : specutil.py : 13 [1018, 1060]
WARNING : specutil.py : 14 [1092, 1095]
WARNING : specutil.py : 15 [1195, 1198]
WARNING : specutil.py : 16 [1227, 1233]
WARNING : specutil.py : 17 [1263, 1266]
WARNING : specutil.py : 18 [1370, 1375]
WARNING : specutil.py : 19 [1479, 1482]
WARNING : specutil.py : 20 [1868, 1871]
WARNING : specutil.py : 21 [1899, 1904]
WARNING : specutil.py : 22 [55, 57]
INFO : LineID_AT.py : Detecting segments in CubeStats based data
WARNING : specutil.py : 0 [508, 511]
WARNING : specutil.py : 1 [1019, 1059]
WARNING : specutil.py : 0 [822, 828]
WARNING : specutil.py : 1 [1926, 1931]
WARNING : specutil.py : 2 [1975, 1978]
INFO : LineID_AT.py : Searching for spectral peaks with method: PeakFinder
INFO : LineID_AT.py : Too many peaks in CubeSpectrum for pattern finding to be useful, turning it off.[2]
INFO : LineID_AT.py :  Found line: U_86.1511  @ 86.1511006747GHz, channels 1975 - 1978
REGRESSION : LINEID: U_86.1511 86.15110  1975 1978
INFO : LineID_AT.py :  Found line: U_86.1559  @ 86.1558862114GHz, channels 1926 - 1931
REGRESSION : LINEID: U_86.1559 86.15589  1926 1931
INFO : LineID_AT.py :  Found line: U_86.1585  @ 86.1585231398GHz, channels 1899 - 1904
REGRESSION : LINEID: U_86.1585 86.15852  1899 1904
INFO : LineID_AT.py :  Found line: U_86.1615  @ 86.1614530602GHz, channels 1868 - 1871
REGRESSION : LINEID: U_86.1615 86.16145  1868 1871
INFO : LineID_AT.py :  Found line: U_86.1995  @ 86.1995420257GHz, channels 1479 - 1482
REGRESSION : LINEID: U_86.1995 86.19954  1479 1482
INFO : LineID_AT.py :  Found line: CH3OCHOv=0 7(4,4)-6(4,3)A @ 86.21008GHz, channels 1370 - 1375
REGRESSION : LINEID: CH3OCHOv=0 86.21008  1370 1375
INFO : LineID_AT.py :  Found line: U_86.2205  @ 86.2205397887GHz, channels 1263 - 1266
REGRESSION : LINEID: U_86.2205 86.22054  1263 1266
INFO : LineID_AT.py :  Found line: CH3OCH3 2(2,0)-2(1,1)AE @ 86.22378GHz, channels 1227 - 1233
REGRESSION : LINEID: CH3OCH3 86.22378  1227 1233
INFO : LineID_AT.py :  Found line: U_86.2273  @ 86.2272786057GHz, channels 1195 - 1198
REGRESSION : LINEID: U_86.2273 86.22728  1195 1198
INFO : LineID_AT.py :  Found line: SiO 2-1 @ 86.24337GHz, channels 928 - 1095
REGRESSION : LINEID: SiO 86.24337  928 1095
INFO : LineID_AT.py :  Found line: (CH3)2COv=0 19(9,10)-19(8,11)EA @ 86.26354GHz, channels 819 - 829
REGRESSION : LINEID: (CH3)2COv=0 86.26354  819 829
INFO : LineID_AT.py :  Found line: U_86.2645  @ 86.264488595GHz, channels 814 - 819
REGRESSION : LINEID: U_86.2645 86.26449  814 819
INFO : LineID_AT.py :  Found line: U_86.2706  @ 86.2706414279GHz, channels 751 - 754
REGRESSION : LINEID: U_86.2706 86.27064  751 754
INFO : LineID_AT.py :  Found line: (CH3)2COv=0 40(14,27)-39(15,24)AE @ 86.28835GHz, channels 569 - 572
REGRESSION : LINEID: (CH3)2COv=0 86.28835  569 572
INFO : LineID_AT.py :  Found line: U_86.2891  @ 86.2890999266GHz, channels 561 - 564
REGRESSION : LINEID: U_86.2891 86.28910  561 564
INFO : LineID_AT.py :  Found line: CH3CH2CHO 19(4,16)-18(5,13) @ 86.29444GHz, channels 508 - 511
REGRESSION : LINEID: CH3CH2CHO 86.29444  508 511
INFO : LineID_AT.py :  Found line: U_86.2954  @ 86.2953504235GHz, channels 496 - 500
REGRESSION : LINEID: U_86.2954 86.29535  496 500
INFO : LineID_AT.py :  Found line: U_86.3066  @ 86.3065817851GHz, channels 383 - 386
REGRESSION : LINEID: U_86.3066 86.30658  383 386
INFO : LineID_AT.py :  Found line: U_86.3189  @ 86.3188874509GHz, channels 256 - 259
REGRESSION : LINEID: U_86.3189 86.31889  256 259
INFO : LineID_AT.py :  Found line: g'Ga-(CH2OH)2 29(10,19)v=0-28(11,18)v=0 @ 86.3222GHz, channels 223 - 233
REGRESSION : LINEID: g'Ga-(CH2OH)2 86.32220  223 233
INFO : LineID_AT.py :  Found line: H13CN J=1-0,F=2-1 @ 86.34016GHz, channels 55 - 165
REGRESSION : LINEID: H13CN 86.34016  55 165
INFO : LineID_AT.py :  Line Coverage 380 / 2062 = 0.184287
TIMING : LineID done  [   20.914424      21.34397101  1667.84765625   402.609375  ]
TIMING : LineID END [ 78.174143   78.8018949]
INFO : AT.py : BDP_OUT[0] = LineList_BDP x.ll
TIMING : ADMITrun END [ 156.279354    164.18538404]
INFO : Admit.py : ADMIT run() finished [flowcount 1] [cpu 156.279 164.185 ]
INFO : Admit.py : ADMIT run() called [flowcount 1]
INFO : 
INFO : 
INFO :    Executing LineCube_AT - '' (V1.2.2)
INFO : 
INFO : 
INFO :   Run using the following settings:
INFO :     equalize :  False
INFO :     pad :  5
INFO :     fpad :  -1.0
INFO : 
TIMING : LineCube ADMIT [  1.58275309e+02   1.64729409e+09]
TIMING : LineCube BEGIN [ 0.  0.]
TIMING : LineCube start  [  2.35901000e-01   2.37236023e-01   1.66784766e+03   4.02781250e+02]
TIMING : LineCube pad  [  1.53770000e-02   1.54249668e-02   1.66784766e+03   4.02781250e+02]
TIMING : LineCube trans-x.U_86.1511  [  7.89020000e-02   1.47922039e-01   1.66784766e+03   4.02839844e+02]
TIMING : LineCube trans-x.U_86.1559  [  7.50900000e-02   2.17674017e-01   1.66784766e+03   4.02839844e+02]
TIMING : LineCube trans-x.U_86.1585  [  7.47880000e-02   2.47745991e-01   1.66784766e+03   4.02839844e+02]
TIMING : LineCube trans-x.U_86.1615  [  7.48280000e-02   1.32544994e-01   1.66784766e+03   4.02839844e+02]
TIMING : LineCube trans-x.U_86.1995  [  7.50070000e-02   1.21592045e-01   1.66784766e+03   4.02839844e+02]
TIMING : LineCube trans-x.CH3OCHO_86.21008  [  7.54330000e-02   1.65746927e-01   1.66784766e+03   4.02839844e+02]
TIMING : LineCube trans-x.U_86.2205  [  7.48870000e-02   1.39844179e-01   1.66784766e+03   4.02839844e+02]
TIMING : LineCube trans-x.CH3OCH3_86.22378  [  7.57060000e-02   1.44678831e-01   1.66784766e+03   4.02839844e+02]
TIMING : LineCube trans-x.U_86.2273  [  8.03400000e-02   3.06434155e-01   1.66784766e+03   4.02839844e+02]
TIMING : LineCube trans-x.SiO_86.24337  [  1.03729000e-01   1.59991980e-01   1.66784766e+03   4.02839844e+02]
TIMING : LineCube trans-x.(CH3)2CO_86.26354  [  7.59440000e-02   4.23909903e-01   1.66784766e+03   4.02839844e+02]
TIMING : LineCube trans-x.U_86.2645  [  7.58410000e-02   1.76774979e-01   1.66784766e+03   4.02839844e+02]
TIMING : LineCube trans-x.U_86.2706  [  7.85190000e-02   1.19657993e-01   1.66784766e+03   4.02839844e+02]
TIMING : LineCube trans-x.(CH3)2CO_86.28835  [  8.12340000e-02   1.25626087e-01   1.66784766e+03   4.02839844e+02]
TIMING : LineCube trans-x.U_86.2891  [  7.68530000e-02   1.54872894e-01   1.66784766e+03   4.02839844e+02]
TIMING : LineCube trans-x.CH3CH2CHO_86.29444  [  7.91190000e-02   1.19405031e-01   1.66784766e+03   4.02839844e+02]
TIMING : LineCube trans-x.U_86.2954  [  7.53780000e-02   1.19575977e-01   1.66784766e+03   4.02839844e+02]
TIMING : LineCube trans-x.U_86.3066  [  7.54390000e-02   1.44236088e-01   1.66784766e+03   4.02839844e+02]
TIMING : LineCube trans-x.U_86.3189  [  7.87610000e-02   1.30120993e-01   1.66784766e+03   4.02839844e+02]
TIMING : LineCube trans-x.(CH2OH)2_86.32220  [  7.60800000e-02   1.36538982e-01   1.66784766e+03   4.02839844e+02]
TIMING : LineCube trans-x.H13CN_86.34016  [  9.27290000e-02   1.58127069e-01   1.66784766e+03   4.02839844e+02]
REGRESSION : LC: [1970, 1983, 1921, 1936, 1894, 1909, 1863, 1876, 1474, 1487, 1365, 1380, 1258, 1271, 1222, 1238, 1190, 1203, 923, 1100, 814, 834, 809, 824, 746, 759, 564, 577, 556, 569, 503, 516, 491, 505, 378, 391, 251, 264, 218, 238, 50, 170]
TIMING : LineCube done  [  2.52590000e-02   2.53210068e-02   1.66784766e+03   4.02839844e+02]
TIMING : LineCube END [ 1.943583    3.88348103]
INFO : AT.py : BDP_OUT[0] = LineCube_BDP x.U_86.1511/lc.im
INFO : AT.py : BDP_OUT[1] = LineCube_BDP x.U_86.1559/lc.im
INFO : AT.py : BDP_OUT[2] = LineCube_BDP x.U_86.1585/lc.im
INFO : AT.py : BDP_OUT[3] = LineCube_BDP x.U_86.1615/lc.im
INFO : AT.py : BDP_OUT[4] = LineCube_BDP x.U_86.1995/lc.im
INFO : AT.py : BDP_OUT[5] = LineCube_BDP x.CH3OCHO_86.21008/lc.im
INFO : AT.py : BDP_OUT[6] = LineCube_BDP x.U_86.2205/lc.im
INFO : AT.py : BDP_OUT[7] = LineCube_BDP x.CH3OCH3_86.22378/lc.im
INFO : AT.py : BDP_OUT[8] = LineCube_BDP x.U_86.2273/lc.im
INFO : AT.py : BDP_OUT[9] = LineCube_BDP x.SiO_86.24337/lc.im
INFO : AT.py : BDP_OUT[10] = LineCube_BDP x.(CH3)2CO_86.26354/lc.im
INFO : AT.py : BDP_OUT[11] = LineCube_BDP x.U_86.2645/lc.im
INFO : AT.py : BDP_OUT[12] = LineCube_BDP x.U_86.2706/lc.im
INFO : AT.py : BDP_OUT[13] = LineCube_BDP x.(CH3)2CO_86.28835/lc.im
INFO : AT.py : BDP_OUT[14] = LineCube_BDP x.U_86.2891/lc.im
INFO : AT.py : BDP_OUT[15] = LineCube_BDP x.CH3CH2CHO_86.29444/lc.im
INFO : AT.py : BDP_OUT[16] = LineCube_BDP x.U_86.2954/lc.im
INFO : AT.py : BDP_OUT[17] = LineCube_BDP x.U_86.3066/lc.im
INFO : AT.py : BDP_OUT[18] = LineCube_BDP x.U_86.3189/lc.im
INFO : AT.py : BDP_OUT[19] = LineCube_BDP x.(CH2OH)2_86.32220/lc.im
INFO : AT.py : BDP_OUT[20] = LineCube_BDP x.H13CN_86.34016/lc.im